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Series Circuits

Two types of current are readily available to the consumer today. One is direct current (dc), in which ideally
the flow of charge (current) does not change in magnitude (or direction) with time. The other is sinusoidal
alternating current (ac), in which the flow of charge is continually changing in magnitude (and direction)
with time.

The battery of Fig. below, by virtue of the potential difference between its terminals, has the ability to cause
(or “pressure”) charge to flow through the simple circuit. The positive terminal attracts the electrons through
the wire at the same rate at which electrons are supplied by the negative terminal. As long as the battery is
connected in the circuit and maintains its terminal characteristics, the current (dc) through the circuit will not
change in magnitude or direction.

Battery
— 1-2-£
E (volts) R § .
Lejectron -

Introducing the basic components of an electric circuit.

The SERIES CIRCUIT consists of any number of elements joined at terminal points, providing at least one
closed path through which charge can flow. The circuit of Fig. 5.4(a) has three elements joined at three
terminal points (a, b, and c) to provide a closed path for the current I.

Two elements are in series if

1. They have only one terminal in common (i.e., one lead of one is connected to only one lead of the
other).

2. The common point between the two elements is not connected to another current-carrying element.

R,

In series circuits
The total resistance of a series circuit is the sum of the resistance levels.
The current is the same through each element.

Rr =R, +Ry+ ...+ Ry

using Ohm’s law; that is,
V1 = IRl ’VZ = IRZ ,V3 = IR3 ) VN = IRN
The power delivered to each resistor can be calculated as

— _Vl — — 72
Pl—IV]_—R_Vl—R_—IRl
1 1
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The total power delivered to a resistive circuit is equal to the total power dissipated by the resistive

elements.

EXAMPLE 1

a. Find the total resistance for the series circuit.

b. Calculate the source current Is.

c. Determine the voltages V1, V2, and V3.

d. Calculate the power dissipated by R1, R2, and R3.

e. Determine the power delivered by the source,

and compare it to the sum of the power levels of part (d).

EXAMPLE 2
Determine Ry, I, and V; for the following circuit

Electromotive Force (EMF)
E=V+Ir

V=E-Ir
E=IR+Ir=I1(r +R)

EXAMPLE 3
Calculate the EMF of the cell in figure shown below

VOLTAGE SOURCES IN SERIES

...... + Py
+ ¥, —
I R =20
+
—_ 20V V)Rzglﬂ
. . 2
RT -
Ry;=510Q) I
= -+
— 12 +
I R =7Q R, =40
=50V R3§7Q
T
Ry
S -
= 7Q
Wy
=060
E===20V R 225{1
s

Voltage sources can be connected in series, , to increase or decrease the total voltage applied to a system.
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KIRCHHOFF’S VOLTAGE LAW

Kirchhoff’s voltage law (KVL) states that the algebraic sum of the potential rises and drops around a

closed loop (or path) is zero.
A closed loop is any continuous path that leaves a point in one direction and returns to that same point from

another direction without leaving the circuit. e
1
a AAA

26 L — 0 (1 - R,

b

KVL R, é ¥

il
|
by

Kirchhoff’s voltage law can also be stated in the following form:
ZC Vrises — 2@ Vdrops

EXAMPLE 4
Determine the unknown voltages for the networks of following Figures

+ Vi +42V - H12V - | +6V -
R, R, R, R,
A\ M —— MW ——W—
EI—T 16V E,™==9V E—T 32V e R_qgu\'
— =

(a) (b)

EXAMPLE 5
Determine | and the voltage across the 7-_ resistor for the network of the Figure shown below.

40 | 70
- W
12.5V

S50V==

4Q
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VOLTAGE DIVIDER RULE
In a series circuit,
the voltage across the resistive elements will divide as the magnitude of the resistance levels.

Ry =R, + R, !
=— -
RT R i
Applying Ohm’s law: — R, § 4
Vi=IR =—R =E> -
T ——
v, —IRZI— o Ry =E .
In genera
Ry 7
—

In words, the voltage divider rule states that
The voltage across a resistor in a series circuit is equal to the value of that resistor times the total
impressed voltage across the series elements divided by the total resistance of the series elements.

EXAMPLE 6
Using the voltage divider rule, determine the voltages V; and V3 for the series circuit shown below

_+_
_+_
R, § 2kQ) 1,
B I/r
+
E== 45V R, §5 kQ
+
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Parallel Circuits

PARALLEL ELEMENTS
Two elements, branches, or networks are in parallel if they have two points in common.

Remove Watermark Now

O

—

Ry §Rl §R3 §R3

O
1 _1.1 1
Ry R, R, " Ry

GT = Gl +GZ + .- GN

In parallel circuits

The voltage across parallel elements is the same. 7 It + +
Using this fact will result in s l 1 lz

E = V1 - V2

but —_

L 11 = 27V R1§9QV1 R2§ISQV7
Rr Ry Ry

E E E

2 =245 —

Rt R1 Ry Ry - -
E_h ¥

Rr Ry Ry =

=L+

Therefore, The total current equal to algebraic sum of branches current

EXAMPLE 1
Determine the total conductance and resistance for the parallel network of Fig. shown below

EXAMPLE 2
Determine the total conductance and resistance for the parallel network of Fig. shown below

The total resistance of parallel resistors is always less than the value of the smallest resistor.
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EXAMPLE 3
Determine the total conductance and resistance for the parallel network of Fig. shown below

o
_—
Ry
ngm R2§9Q R3§6Q R4§72Q R5§6Q

o
EXAMPLE 4 7 ;T [
For the following parallel network: ’ l ! lz

E==21V Rlé 907, R2§189V2

a. Calculate Rr. Ry - _

b. Determine I.

c. Calculate I, and I, and demonstrate that Is = I + I.
d. Determine the power to each resistive load.

e. Determine the power delivered by the source, and compare it to the total power dissipated by the resistive
elements.

KIRCHHOFF’S CURRENT LAW

Kirchhoff’s voltage law provides an important relationship among voltage levels around any closed loop of a network. We now
consider

Kirchhoff’s current law (KCL), which provides an equally important relationship among current levels at any junction.
Kirchhoff’s current law (KCL) states that the algebraic sum of the currents entering and leaving an area, system, or junction
is zero.

In other words,

the sum of the currents entering an area, system, or junction must equal the sum of the currents leaving the area, system, or
junction.

In equation form:

) ]entering = X ]leaving

EXAMPLE 5
Determine the currents Isand l4
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EXAMPLE 6

Find the magnitude and direction of the currents Is, l4, s, and 17 for the network of following Figure. Even though the elements
are not in series or parallel, Kirchhoff’s current law can be applied to determine all the unknown currents.

EXAMPLE 7
Determine Iz, I3, 14, and Is for the network shown below

EXAMPLE 8
Determine the currents Izand Is of Fig. shown below through applications of Kirchhoff’s current law.

5L=3A
—
ANV ———
I,=1A
A M
—
I, =4A
—e )
I
M-

7.

EXAMPLE 9 Find the magnitude and direction of the currents Is, ls, ls, and I for the network shown below. Even though the
elements are not in series or parallel, Kirchhoff’s current law can be applied to determine all the unknown currents.

b

CURRENT DIVIDER RULE

The current divider rule (CDR) will determine how the current entering a set of parallel branches will split
between the elements.

For two parallel elements of equal value, the current will divide equally.

For parallel elements with different values,

The smaller resistance has greatest value of current.

The current will split with a ratio equal to the inverse of their resistor values.
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IT=11+12+“'+IN

E=V,=V,=Vy T _l!

E _ 11R1 _ 12R2 _ INRN +— m -, —_m—n - - - - =

= — = = | |
Iy Rr  Rr R R lll l/z l/‘,‘ | | l/_\.
IxR
I =X —_—
T™ Ry Ry 4 él{l §Rz §R; Ry
1 -C
_ 1 Rx _ 5 Rr | I
Le=Ir 3= =1Ir - : .
RT e

For the particular case of two parallel resistors,
1 1 1

Ry Ry Ry R
I = ITIl = IT—L:L =Ir R1+1R2 = TR1+2R2
RT R1 R R1Ry
X X X
R R R R
I = ITIZ = IT—L zi =Ir R1+2R2 =Ir R1+1R2
Rt R1 Rz R1R2
EXAMPLE 10
Determine the current I2for the network shown below using the current divider rule.
I,=6A
> ] I
RZAKD R TSRO
~<—
EXAMPLE 11 I;=06A

Determine the current 11 for the network shown below using the current divider rule.

o jl = 42 mA

R,§ 60 R:§24 " R_;§48 0
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Series-Parallel Networks

series-parallel networks are networks that contain both series and parallel circuit configurations.

.y
A "AV
10 lf.e Vr-
B @
. RS 050
]_Ql 7 =
R < <
E 10V BRZT4ORZTH0
‘b
RS0
=

Remove Watermark Now

Example 1
Find the indicated currents of the figure shown below

> =
i

<

Example 2
Find the indicated currents of the figure shown below
R, A
o [ ,
oy

<<
=
e
~1
—
=
&
—
P

>
R =40 c
9 5
E===168V RZ30

EXAMPLE 3
Find the current l4and the voltage V2 for the network shown below

Example 4
Find the indicated currents and voltages for the network shown below _
1
Rl
AVVV
60
I, Ry I
r’ A,—
Yyy
6 ()
Ry Ry li;
-_— AAA +
Yyy
E====24V 20 R, <80 R, 120 V5
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EXAMPLE 5

a. Find the voltages V1, V3, and Vab for the network shown below.

b. Calculate the source current Is.

EXAMPLE 6

For the transistor configuration shown below, in which Ve and Vee have been provided:

a. Determine the voltage Ve and the current Ie.

b. Calculate V1.

c. Determine Vsc using the fact that the approximation Ic = Ieis often applied to transistor networks.
d. Calculate Vce using the information obtained in parts (a) through (c).

Example 7

Find the indicated currents of the figure shown below

1

8

Rl
Wy
50
e

+ Ry

=240V R,
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CURRENT SOURCES

EXAMPLE 1
Find the source voltage Vsand the current l1for the circuit shown below

[I
ngzo kQ

I = 10mA

EXAMPLE 2 -
Find the source voltage Vsand the current I1for the circuit shown below I

SOURCE CONVERSIONS

; i]L lfz
% s I:RESCTD RE RZ

Ry
‘ ] o
R — 1=k
| E— CTD zx
-|- E - IR,
0] O
-é_ b = b

EXAMPLE 3
a. Convert the voltage source of Fig. 8.9(a) to a current source, and calculate the current through the 4Q load for each source.

b. Replace the 4Q load with a 1-kQ load, and calculate the current I for the voltage source.
¢. Repeat the calculation of part (b) assuming that the voltage source is ideal (Rs=0 Q) because Rris so much larger than Rs. Is this
one of those situations where assuming that the source is ideal is an anoropriate aporoximation? .

3A
b lll : 1/1,
=2 €

R1§4Q 1 ]‘25:3A (T) R, =20 R, =40

b — b
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EXAMPLE 4
a. Convert the current source of Fig. shown below to a voltage source, and find the load current for each
source.
b. Replace the 6-kQ load with a 10Q load, and calculate the current I, for the current source.
c. Repeat the calculation of part (b) assuming that the current source is ideal (Rs = oo Q) because R, is so
much smaller than Rs. Is this one of those situations where assuming that the source is ideal is an appropriate
approximation?

a a

>
R, 2 3kO
R R
9mA<D1 Jgaksz ;_§6k51 — RLéékSl
9 mA Y]’] IR 27\1_--_ “,r[

— b — b

(a) (b)

CURRENT SOURCES IN PARALLEL

If two or more current sources are in parallel, they may all be replaced by one current source having the
magnitude and direction of the resultant, which can be found by summing the currents in one direction and
subtracting the sum of the currents in the opposite direction.

EXAMPLE 5
Reduce the parallel current sources of Fig. shown below to a single current source.

A

6A - 10 A -
- -
R 230 Q) RZ 60

+=

EXAMPLE 6
Reduce the network of Fig. shown below to a single current source, and calculate the current through R, .

1.[‘
R =80 l
I, C)GA R3§24 ) R,_§14Q
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CURRENT SOURCES IN SERIES

current sources of different current ratings are not connected in series,

BRANCH-CURRENT ANALYSIS

Assign a distinct current of arbitrary direction to each branch of the network (N).
Label each of the N branch currents.

Indicate the polarities for each resistor as determined by the assumed current direction.
Count the number of current sources

Number of variables equal to N- number of current sources

Apply Kirchhoff’s voltage law around each closed, independent loop of the network.
Express any additional organize the equations.

Solve the resulting simultaneous linear equations for assumed branch currents.

N~ wWNE

Example 7
Apply the branch-current method to the network of the following network

T L3
R, =20 ; R:§1£1
I 1 I
I I !
|
I I I
|
+ : "*: S
E,===12V ' E)==="6V
N /
T R T
Example 8 =
Apply the branch-current method to the network of the following network
| 7 " 1_ - Yy \ +
R1§4n R3§10(2 R, ﬁsn
+ : o s Y S -
I e
| " Iy ) " :
I I I I
1Y ¥ : h ¥
! I
+1 +! LT
E,===m15V  Ey===120V B =40V
N _I‘_ _ _”2_ J +
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MESH ANALYSIS

1. Assign a distinct current in the clockwise or anticlockwise direction to each independent, closed loop of the network
(N).

Label each of the N mesh currents.

Indicate the polarities for each resistor as determined by the assumed current direction.

Count the number of current sources

Number of variables equal to N- number of current sources

Apply Kirchhoff’s voltage law around each closed, independent loop of the network.

Express any additional organize the equations.

Solve the resulting simultaneous linear equations for assumed branch currents.

N~ WN

Example 9
Apply the Mesh method to the network of the following network to find the current through each branch.

—— =

R= 20

1
|
|
|
¥

R

"

A

Example 10
Find the branch currents of the network shown below

Supermesh Currents

Example 11
Using mesh analysis, determine the currents of the network shown below

R, R;
40 2Q
Ri<<60Q)
I 4 A Ey) e 12V

E, T 20V
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Example 12

Using mesh analysis, determine the currents of the network shown below

HW
Find the mesh currents of the network shown below
R, E,
AW
40 6V

||[—<

Dependent source

An independent voltage/current source is an idealized circuit component that fixes the voltage or current in a
branch, respectively, to a specified value.

Example 13

Determine the currents of the network shown below

== AN
I joq
200 30\/@ @ B4

O b Tl O i

300

=5
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NODAL ANALYSIS
A node is defined as a junction of two or more branches. If we now define one node of any network as a
reference (that is, a point of zero potential or ground), the remaining nodes of the network will all have a
fixed potential relative to this reference. For a network of N nodes, therefore, there will exist (N -1) nodes
with a fixed potential relative to the assigned reference node. Equations relating these nodal voltages can be
written by applying Kirchhoff’s current law at each of the (N -1) nodes. To obtain the complete solution of a
network, these nodal voltages are then evaluated in the same manner in which loop currents were found in
loop analysis.

The nodal analysis method is applied as follows:

1. Determine the number of nodes within the network.

2. Pick a reference node, and label each remaining node with a subscripted value of voltage: V1, V2, and
SO on.

3. Apply Kirchhoff’s current law at each node except the reference. Assume that all unknown currents
leave the node for each application of Kirchhoff’s current law.

4. Solve the resulting equations for the nodal voltages.

Example 14

Determine the nodal voltages

R;
Wy
120 R, §6 0
4A R=Z20 RZ60Q 2A
() 2 3 CD R2§12 Q I 1A
+
L ET=24V
Supernode —
Example 15 -
Determine the nodal voltages
‘ﬁ;\
100
|
|I
12V 4A
6A RiIZ40 K220
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Delta — star and star — delta convertors

RaRp
Rl - a0
RqRpRc
R2 — RaRc
RqRpRc
RcRp
R3 = —==
RqRpR¢
R, =
R3
Rb =
R
R{R3+R{R3+R3R3
R, =
Ry
Example

Calculate the total resistance of the circuit shown below

R, §69
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Introduction

Capacitors and inductors are passive elements, each of which has the ability to both store and deliver finite amount of
energy. They differ from ideal source in the respect, since they cannot sustain a finite average power flow over an
infinite time interval. Although they are classed as linear elements, the current-voltage relationships for these elements
are time-dependent, leading to many interesting circuits.

The capacitor
Just like the Resistor, the Capacitor, sometimes referred to as a Condenser, is a simple passive device that is used to
“store electricity”. The capacitor is a component which has the ability or “capacity” to store energy in the form of an
electrical charge producing a potential difference (Static Voltage) across its plates, much like a small rechargeable
battery.

The amount of potential difference present across the capacitor depends upon how much charge was deposited onto
the plates by the work being done by the source voltage and also by how much capacitance the capacitor has and this
is illustrated below.

Condustive

Farzllal Plates Electrical
Capacitance is the electrical property of a capacitor and is the measure of a capacitors =/, _QO—/"’”’QE
ability to store an electrical charge onto its two plates with the unit of capacitance ; -
being the Farad (abbreviated to F) named after the British physicist Michael Faraday. B J—
Capacitance is defined as being that a capacitor has the capacitance of One Farad bisactic T

when a charge of One Coulomb is stored on the plates by a voltage of One volt. Syl

Capacitance, C is always positive and has no negative units. However, the Farad is a IF
very large unit of measurement to use on its own so sub-multiples of the Farad are
generally used such as micro-farads, nano-farads and pico-farads, for example, the

1

Yoltags Ve

1
(FFFF+FFFF ]

capacitance is determined by
) - : l é \
C = farads (F)
Cc= % © = coulombs (C) | ' p——— ]
V = volts (V) ) T

If a potential difference of V volts is applied across the two plates separated by a distance of d, the electric field

strength between the plates is determined by
: V
c,(g A

d

(volts/meter, V/m)

The ratio of the flux density to the electric field intensity in the dielectric is called the permittivity of the dielectric:

E— ? (farads/meter, F/m)

For a vacuum, the value of ¢ (denoted by €,) is 8.85 x 1072 F/m. The ratio of the permittivity of any dielectric to
that of a vacuum is called the relative permittivity, €,. It simply compares the permittivity of the dielectric to that of
air. In equation form,

& = —
€

The current i, associated with a capacitance C is related to the voltage across the capacitor by
dv,

i.=C .
dt l i(t)

+

T ve(t)
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Example:
Determine the current i following through the 2F capacitor for the two waveforms of following figures.

\Y%

JANAN/

0 f (ms) 0 \/ \/
I

N A A

0 t (ms) 0 \/ \/ t (mc.)

t (ms)

The capacitor voltage may be expressed in terms of the current by integrating i.. We first obtain
1
d‘UC = El(t)dt
And then integrate between the times t,and t and between the corresponding voltages v(t,) and v(t,) as.

10t .
v= —f i(Hdt + v(ty)
C to

Example:
Find the capacitor voltage that is associated with the current show graphically in Figure below. The value of the

capacitor is 5pF.
i(t)

1t
ve(t) = Ef idt + v(ty)
0

0 r(ms)

v.(t) =400t 0<t<?2

o v.()=8 t>2

0  (ms)

Energy storage
To determine the energy stored in a capacitor, we begin with the power delivered to it.

p=vi=Cv—
The change in the energy stored in its electric field is simply

v(t) 1
f pdf = f v—dt _ f b dv = = C[w(O] = [v(t)]?]

o ) 2
And thus

1
we(t) — we(to) = EC[[v(t)]2 - [w(tn)]?]
Finally
w.(t) = %CUZ

2
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Example:
Find the maximum energy stored in the capacitor of following figure and the energy dissipated in the resistor over the
interval 0 <t < 0.5s. , ‘ *

100 sin 2=t V 1 MQ 20 pF
Solution: ]\

we(t) = %Cvz = 0.1sin?2nt J

Pp=— w E
R ™ g 106
0.5 102 sin? 2mt Ve

we = [ Ppdt = [P0 g

106 P Veic

Vip

V2 10%sin?2nmt

=t

Capacitors in Series -
For the following circuit the source voltage can be written as

N N " (?| (?g (jx + _
N, S i H [ 4] | +| |-
vg = vy = o i(t)dt + v(ty)
n=1 n=1L Ml I | | | |
N 1 ¢ N C"'-{-l
= Z —f i(Hdt + Z v(ty) Us Vs
n=1Cn to n=1 +| I- +| |
|
And | I |
1
Vg = — l(t)dt + Z v(ty)
Ceq J¢
As a result
N
:E: 1 +_ o 1
4 C -_ wen CN
o Cy Cs
Example: I{ IC IC
For the circuit shown below <=, )
1- Find the total capacitance. + r 200pF  SOuF 10 pF
2- Determine the charge on each plate. Em=== 60V
3- Find the voltage across each capacitor. -
Solution
oLt _y3 2t 1t 11 1 T 6 — 6
1 o Y1 i + c + & = 700x10 * Sox0=8 T Toxtos (0.005 + 0.02 4+ 0.1) x 10° = 0.125 x 10
Cr = ! =8 uF
TT0125%x 106 O

2- Qr=0Q,=0Q,=Q5=CrE=8x107°%x 60 = 480uC

Q 480x10~°
L=——— =24V
C; 200x1076

480x10~°
vy, = % _ — =96V
Cy 50x10~6

480x107°
vy =2 =T — 48y
C3 10x10~6

3- v =
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Example:

For the network of Figure shown below

a. Find the total capacitance.

b. Determine the charge on each plate.

c. Find the total charge.

Solution

C C, Cs

T~

48V 800 uF

T T~
60 uF  [1200 pF

= Crp=C +Cy+C3 =800X107¢+60x 1076+ 1200 x 106 = 2060 uF

b- Q, =CE =800x107°x 48 = 38.4mC(
Q, = C,E = 60 X 1076 x 48 = 2.88 mC

Q3 = C3E = 1200 X 107° x 48 = 57.6 mC

c-Qr=0Q;+0Q,+0Q3=384x10"3+288x 1073+ 57.6 x 1073 = 98.88 mC

Capacitors in parallel

The circuits of following figure enable us to establish the value of capacitor which is equivalent to N parallel

capacitors are

Example:
Find C,, for the following network
1X5%2 10
C,=———"—==—uF
1X5+1X2+2X5 17

C, =+ 12 = 12.588uF
12.588x%0.4%0.8

il

c1

w]l_ﬁ V]I:\.-

C3 CN

iz

C = =
3 12.588x%0.4+0.4%x0.8+12.588x0.8
__7X5 35
47745 T 12
Ceq = C3 + C4 =

Ceg

Important Characteristics of an Ideal Capacitor
1- There is no current through a capacitor if the voltage across it is not change with time. A capacitor is an open

circuit to d.c.

2- A finite amount of energy can be stored in the capacitor even if the current trough the capacitor is zero, such

as when the voltage across it is constant.

3- It is impossible to change the voltage across the capacitor by a finite amount in zero time, as this requires an

infinite current through the capacitor.

4- A capacitor never dissipate energy, but only stores it. Although this is true for the mathematical model, it is
not true for a physical capacitor due to finite resistor associated with the dielectric as well as the packaging.
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The Inductor
In the early 1800s the Danish science Oersted showed that a current carrying conductor produced a magnetic field.
Shortly thereafter, Ampers made some careful measurements which demonstrated that this magnetic field was linearly
related to the current which produced it. The English experimental Michael faraday and the American inventor Joseph
Henry discovered that a changing magnetic field could induce a voltage in a neighboring circuit. They showed that
this voltage was proportional to the time rate of change of the current producing the magnetic field. Mathematically
can be expressed as

Example:
Given the waveform of the current in a 3H inductor as shown in figure below, determine the inductor voltage and
sketch it.

n]
1 \ yo &
> S dt
-1 1 2 3 t (ms)
V=3x1=3 —-1<t<0
V=0 0<t<?2
r 3 V
3 V=3x(-1)=-3 2<t<3
-1 1 7 3 f (ms)
=3
To calculate the inductor current, rewrite the voltage expression as
1
di = —vdt
b=7v

fl(t) 1 t
diz—j vdt
ity Lle,
1t
i(t) —i(ty) = —f vdt
L to
t

1 ;
i(t) = —f vdt + i(tg)
L to
Example:

The voltage across a 2H inductor is known to be 6cos5t V. Determine the resulting inductor current if i(t = —g) =

1A.

Example:

A 100 mH inductor has voltage v, = 2e~3'V across its terminals. Determine the resulting inductor current if
i (—=0.5) = 1A.
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The observed power is given by the current-voltage product
di
p =i i i

The energy w, accepted by the inductor is stored in the magnetic field around the coil. The change in tis energy is
expressed by the integral of the power over the desired time interval:

t i(t) 1
dt =1L —d = idi [ 2
ft pa f & ai = f i =5 O (@)
Thus

Wi (1) = wi(tg) = 5 LILCOP ~ i)

When t, = —o and i(t,) = 0, so that the energy can be expressed as
1
wy (t) = ELIZ

Example:
Find the maximum energy stored in the inductor of following figure and calculate how much energy is dissipated in
the resistor in the time during which the energy is being stored in, and then recovered from, the inductor.

Solution 12sin A (1) 3H
The energy stored in the inductor is 6

w,(t) = %Liz = 216sin2%tJ

Att = O, wp = 0

Att =3s,w, =216

The power dissipated in the resistor is
pr = iR = 14.4sin? mw

The energy converted mto heat in the resistor within 6 s interval is

wi = [y 144sin? Zdt = 6ﬂ(1 — cosZ t) dt = 43.2 ]

Example:
Find the energy stored by the inductor in the circuit shown below when the current through it has reached its final value.

R, R,
30 30
+ e
E===15V L§6mH » =15V lf
Q
-l- 20) T 20)
T Wy T Wy
= R, = R,
Solution
E 15
Iy, = = =34

R,+R, 3+2

1 1
wy (t) =§Li2 =§><6>< 1073 x3%2=27TmJ

Energy stored
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Capacitons and Tuductorns
Inductors in series

Vs =v;+v, +-..tvy L, L, Ln

di di di
=L13+Lza+"'..+LNE

= (Ll +L2 + "'..+LN)Z_:;

di Us

Vs = Leqa

Leq :L1+L2 +"'..+LN

Inductors in Parallel

The combination of a number of parallel inductors is accomplished by writing the single nodal equation for the
original circuit

N N
. . 1t i
is = z in = Z —f v(t)dt + i, (ty) i
Ly J; N
n=1 n=1 0
Ly Vs Leq
N N
10t
= Z—f v(t)dt+z i (to)
— Ln to —
n=1 n=1
1t
is =— | v(®)dt +is(ty)
Leg to
N
1 » Z 1 N 1 - 1 —, 1
Leg  Lily Lyl Ly
Example:
Simplify the network using series-parallel combination.
0.8H
6x3 nN
Coq = +1=3uF
q 9 # é:GuF
2H —==1pF
_zx3 0.8 =2H M——3F
=5 TOOT m T
3H

Important Characteristics of an Ideal Capacitor

1- There is no voltage across an inductor if the current through it is not changing wit time. An inductor is
therefore a short circuit to dc.

2- A finite amount of energy can be stored in an inductor even if the voltage across the inductor is zero, such as
when the current through it is constant.

3- It is impossible to change the current through an inductor by a finite amount in zero time, for this requires an
infinite voltage across the inductor.

4-  The inductor never dissipates energy, but only stories it. Although this is true for the mathematical model, it is
not true for a physical inductor due to series resistance.
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Example:
Write appropriate nodal equations for the following figure.

|1 ]
1|
L R

1%

()

At node 1
1 (¢ ;. V1 — 7y dvy
Z to(vl - ‘Us)dt + lL(tO) + R + Cz% - O
vy dvllft , vz_lft o
R +C2 dt L tovldt R = I tovsdt lL(tO)
At node 2
d(v, —vs) v, — g
[ 0
ode . R -;ls
V1 V2 [ Us
Sy Ef4c 2=, =
RIR T Tl T
Example:
Determine v, for the circuit shown below if ~ v.(t) = 4 cos 10°t 2mH

vs(t) = v, (8) + v (£
Vg <+ = 80nF
de (t) _ _>

i.=C T —80x 107° x 4 X 10°sin10%t = —320 X 10~ *sin10°t
di
v, (t) = L% ==—-320x10"*x2x 1073 x 10%°c0s10°t = —6.4c0os10°t

vs(t) = 4cos 105t — 6.4c0s10°t = —2.4c0s510°t V
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Duality
v L v 30 i
1 2
| W 1l

i = 2c0s6t A D 3S 8H 3 55 vy = 2cos6tV<f> i 4H i, z 50

Two mesh currents can be seen in the figure, and the mesh equations are

di, di

. 2
3 4——4——=27 6t
i1+ i at cos
4di1+4di2+1jt' dt +5i, =0
at * dr ' 8)," 2=

We may now construct the two equations that describe the exact dual of our circuit. We which these to be nodal
equations, and thus begin by replacing the mesh currents by the two nodal voltages. We obtain

3v, + 4 dvy 4 v, _ 2c0s6t
Ul dt d coS
4dv1 dv2+ jt dt +5v, = 0
dt at " 8), "2 V2 =
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Basic RL and RC Circuits

The RL circuit with D.C (steady state)
The inductor is short time at t = o«
Calculate the inductor current for circuits shown below.

Rl Rl
A A
ey | Wy I E 10
= =— =54
- L - > !
E==="10V L2H§H 32339 = E—Tlo\r 33339
L L
7 1omH i'
Rl Rl
A
SQV wl T[ SA.(? I, = E
6 mH l]l Lq ( R2R3 )
E===21V R 260 W pem=21y R, Z60
=30 R,=30 R
b= lng R,
—— ——— —_
= = 20
R-L TRANSIENTS: STORAGE CYCLE
VWA
O 3
_ di
—E+Ri+L—=0
dt
Ri+L i =F
T
Ldi _ Ri
dt '
Ldi = (E — Ri)dt
Ldi it
(E—Ri)

L
—Eln(E—Ri) =t+k
att = 0,i = 0, therefore
L
—Eln(E) =k
And


http://cbs.wondershare.com/go.php?pid=5261&m=db
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Ll (E-Ri)=t Ll (E)
7 i) = gin

Ll E R'+Ll E)=t
ﬁn( 0) En()_

()

E—Ri _ K,
=e
E
E R\ E t
(- 1)-Ea- )
L
== (seconds. s)

ip = Il —e ") = %{1 — ¢ "R

— T
v; = Fe
fic ip=%a- "
v SEL____ s . .
r R | "Dos1z, 0981 0993,
108651, | | |
| I | I
'0.6321, | | |
v, = Ee~!" [ [ | | |
| | | | |
: 0.049E  0.019E  0.007E : : : : :
0 17 27 37 4T ST 67 t 0 ir I Ir Ar ST ¢
Example:
Find the mathematical expression for the transient behaviour of i, and v,
2KQ
VWA
t=0 llL

L 4

= = 2ms
R 2x103

T =

. _E(f, -5 s0 _ _—500tY — __ _—500¢t
lL—R(l e T)_2x103(1 e )=25(1-¢ )mA

t
v, = Ee"t = 50e~°00ty
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Example:

For the circuit shown below, calculate the mathematical expression of i;, v, vg,, vg,before and after the
storage phase has been complete ant the switch is open.

P 4 Rl .
—o‘\l\c ;\M ﬂ"L

2 kO

+ +
i, R2§ 3kQ I g H 4H v,

E=50V =g

=

1-switch on
L 4
T =—=
Req  2x103

t
ip = (1—-e7) = o (1 - e759%) = 25(1 — e =59 )mA <

TRy T 2x103
t
v, = Ee == Soe_SOOt 4 (reversed .
t dolarity ’ -
URl=iLR1=R£R1(1_e_;)=50(1_e_500t)v polarity) +
1
URZ =F = 50 V
2-switch off
After the storage phase has passed and steady-state conditions are established, the switch can be opened without the

sparking effect or rapid discharge due to the resistor R,, which provides a complete path for the current i.. The voltage
v across the inductor will reverse polarity and have a magnitude determined by

= 2ms

(same polarity)

+ v, —
L  (same

L direction)

, L 4
t=—=—>——=08ms
Req  2x103+3x10
_t _t __t
ip=—e t= e t = 25e o0sx103 mA
R4y 2x103

t t t
v, = =iy (R + Ry) = —— (Ry + Rp)e = —E (1 + 22) e Towman = =50 (1 +3) e Towmao =
1 1
t
—75e osx1073)/
, E L —t
Vg, = iR, = R_Rle t* = 50e o0s8x1073 p
1
t t t
Vg, = —i;R, = —RERZe_? = —52—038_0.8><10_3t = —753_0.8x10_3tV
1

Vg, -

. ’s __ Noinstantaneous '®1° i volts A volts
2 change ol __
ET50V e 50 30
Switch opened Same shape
| as iy since
‘.\ 57" = 5(0.8 ms) = 4ms Vg L ir Ry 57
e 1 —r
0 f——" 1 0" Q[ T
; 5 5 ' 57 5177 5T
Switch 52 :ns) 7 37
losed -9
¢ = 10ms
[ EE——
- Instantaneous
-125F-—————— L change
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The Source Free RL circuit

RE §L

Using KVL, leads

) di
Ri + LE =0
This equation represents a differential equation and can be solved by several different methods
di R
T = — Z dt
Since the current is I at t = 0 and i(t) at time t, we may equate the two definite integrals with are obtained by
integrating each side between the corresponding limits

f"(t)di _ thdf
Iy L L Ro
i(t) = Ioe_f;

v(t) = —v, e I

Example:
If the inductor has a current 2A at t=0, find an expression for i; (t) valid for t > 0, and its value at t=200ps.

200 Q 3 gso mH

R 200
it) = Iy e It = 2 sox10-3t = 2p—4000tp
At t=200ps

i(200ps) = 2¢~4000x200x107° — 2,-08 — 898 7 mA

THEVENIN EQUIVALENT:

Example:

For the network of Figure below

a. Find the mathematical expression for the transient behavior of the current iL and the voltage vL after the closing of
the switch (li =0 mA).

b. Draw the resultant waveform for each.

E"=="12V
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Solutions:
a. Applying Thévenin’s theorem to the 80-mH inductor ,yields

20 kQ) 4 k)
Wy MWy
T -

R, 2200

_ (4+16)x 20
th (4 4+ 16) + 20

Applying the voltage divider rule to determine Thevinen voltage

Eq =12 (4 +16) =6V
th= "4 +16)+20
_ L _ 8ox1073 _ 3
T= Rep  10x103 Hs
E t 6 __t
i, = —th(l - e_?) = —(1 —e 8x10‘6)
Ry 10 x 103

t
i; =0.6 (1 —e 8x10°° )mA
_t __t
v, =Egue = 6e sxiw el

Vi i

Ep =6V

L1 L T 1 (us)
5 10 15 20 25 30 35 40 45 50

5t |

Example:
Find the voltage across 402 resistor at t=200ms.

—5 100
| vWW

t=0

-

.
40 Q é

24V

=10KQ

Wy

Ry + Ry =

4kQ + 16 kO
= 20kQ




=0.1s

" Req 10+40
R

i(t) = Iye I' = 2.4 ¢~ 10t

Vio = i(t)R = —2.4 X 40 x e 10t = —96e~10t

Example:

Determine both i; and i; for t > 0.

1mH 500
| VW
t=0 h g
o
1800 = 900 2mH3  FsmH
18V
_2x3 +1=22mH
4243 - Sem
R,, = 180X90+50—11on
€4 180 4+ 90 B
I, = 18 _ 360 mA
LT g T o0
_Rﬂt _ 110 ¢
I,(t) =360 e Lea =360e 22x1073 = 360 e 00004
180
L(t) = =360 =50000t — _24() —50000t 1 4
1) 180+ 90 ¢ ¢ m

HW

The switch S1 of following Figure has been closed for a long time. Att=0s, S1 is opened at the same instant S2 is
closed to avoid an interruption in current through the coil.

a. Find the initial current through the coil. Pay particular attention to its direction.

b. Find the mathematical expression for the current i_ following the closing of the switch S2.

c. Sketch the waveform for i,.

S, 5
(riO s) R, (figs) R
s2k0 || 1kQ
1 12 mA §R1:2.2kﬂ L%HG?%OHIH ET--_GV
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Basic RL and RE cincuite
RC Circuits

Find the voltage across and charge on capacitor Ci of Figure below after it has charged up to its final value.
R,

1
E =24V == R, <8O A~ =20 pF p, —) E =24V 7S

Solution :
the capacitor is effectively an open circuit for dc after charging up to its final value
R, 8
Ve =FE =24—=16V
CT TR +R, 12

Q1 =V:C; =16%x20x107% =320 uC
Example:

Find the voltage across and charge on each capacitor of the network of Figure below after each has charged up to its final value.

€, = 2 yiF
I
I\
Ry

AAA
vy

20N

Solution =
V. = Ry —722—16V
STTR R 9
V. =12 —727—56V
©2" "R, +R, "9~

Q1 = Ve, G, =16x2x 1076 =32 uC
Q2 = V¢, C, =56 3 x 1076 = 168 uC

ENERGY STORED BY A CAPACITOR
The ideal capacitor does not dissipate any of the energy supplied to it. It stores the energy in the form of an electric field between

the conducting surfaces.

We = %Crﬂ )

TRANSIENTS IN CAPACITIVE NETWORKS: CHARGING PHASE

. Y ig v
L AMA— El E4-5
R J‘,:l . —_—
Rapid decay

+ 2 + } Apia deeay Small increase in v

E—r =
_ T Small C]ia.nge mig Rapid increase
J
0 t o t
Basic charging network. ic during the charging phase. Ve during the charging phase.

7
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At t=0, V, = 0, therefore

And

RLC Circuits

Example:
Find the current I and the voltage V¢ for the network

Solution:

R, +I|/{C_
%g X
=12

=10V
R7§BQ

—E+IgR+V,=0
dv,
~E+RC—=+V; =0

RC——=E -V,
t Cc

=dt

[

—RCln(E V) =t+K

—RCIn(E) = K
—RCIn(E —V;) = t — RCIn(E)
—RCIn(E — V) + RCIn(E) = ¢
Ve

+ Ve —
O O—
110
+
ng _
1SV -0
30
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VL—ER1+R2—1O§—6 1%
H.W
Find the currents 11 and 12 and the voltages V, and V, for the network
_ I
R, b R, —B
. 20 L 10 L R4§4Q
R, § 50 §
—— R- 7 Q
£ oY ; -
o GV,
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Sinusoidal Alternating Waveforms
Introduction
The term alternating indicates only that the waveform alternates between two prescribed levels in a set time sequence

Ay Ay Ay
N i X
0 \/ i 0 t 0 t
Sinusoidal Square wave Triangular wave

The vertical scaling of the sinusoidal waveform is in volts or amperes and the horizontal scaling is always in units of time and
can be represented as.

[ Tl -l [ TE -l
-Max
€ Em
| |
i 0 51
/

! A

[}
i
'

Max

Instantaneous value, Peak amplitude, Peak value, Peak-to-peak value and Period.
Frequency ( f): The number of cycles that occur in 1 s.
1 hertz (Hz) = 1 cycle per second (c/s)
1
f=7
Example:
Find the period of a periodic waveform with a frequency of
a. 60 Hz.
b. 1000 Hz.
Solution

a- T =

Il
[~
I
—_
o
(o))
A
3
(5]

~ 1000 y
Example: IIAY

Determine the frequency of the waveform of following Fig / \ /\ /
Solution: .
' 0 25 35 s
From the figure, T = (25 ms - 5 ms) = 20 ms, and 5\/15 \/ ()
1 1
f=5=50%10= = 20 Hz

~ 20%x 1073

(=
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THE SINE WAVE

The unit of measurement for the horizontal axis of Figure below is the degree. A second unit of
measurement frequently used is the radian (rad).

21 (rad) = 360 (degree)

degree
(rad) = 360 27
(degree) = 22360
egree) = ——
m = 3.14159
30° = rad
6
45° == 1ad
4
60° = = rad
3
90° = = rad
2

Sine wave

!
A\

1
90° 189° 270° 0° o

4 Cosine wave

L, | .

9Wm 360° o

The velocity with which the radius vector rotates about the centre, called the angular velocity, can be
determined from the following equation:

Angular velocity =

distance (degrees or radians)

time (seconds)

For sinusoidal waveform, the angular velocity can be expressed as

o
W= —
1
o = wl

(rad/s)

Example:

Determine the angular velocity of a sine wave having a frequency of 60 Hz.

Solution
w=2nf =2x%x314 x 60

=377 rad/s
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Example:
Determine the frequency and period of the sine wave of following Figure.

Solution
_2m
©=7
T—Zn— 2n = 12.57
—1(‘) —500— . ms
=—==7958H -
=7 ’ Tle— @ = 500 rad/s
Example:

Given w = 200 rad/s, determine how long it will take the sinusoidal waveform to pass through an angle of
90°.

_a /2 .
“w 500
Example:

Find the angle through which a sinusoidal waveform of 60 Hz will pass in a period of 5 ms.
a=wt=21ft=2x%x314%X60x5x1073 = 1.885rad

180
a( 9= ?1.885 = 108°
GENERAL FORMAT FOR THE SINUSOIDAL VOLTAGE OR CURRENT
The basic mathematical format for the sinusoidal waveform is
i =Iysina = I, sinwt
v =V, sina =V, sinwt

Example

Given E = 5sin a, determine E at @ = 40° and a = 0.87 .
Solution:

a = 40°

E = 5sina=5(0.6428) = 3.214 V

For ¢ = 0.8,
a (°) =22 (0.8) = 144°

and E = 5 sin 144° = 5(0.5878) = 2.939 VV

The angle at which a particular voltage level is attained can be determined by rearranging the equation

v = V,sina
) v
sina = —
Vin
. _1 v
a=sin""—
Vin

Similarly, for a particular current level,
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Example

a. Determine the angle at which the magnitude of the sinusoidal function v = 10 sin 377t is4 V.
b. Determine the time at which the magnitude is attained.

Solutions:
v
a, = sin_lE— =sin"10.4 = 23.578°

m
The magnitude of 4 V (positive) will be attained at two points between 0° and 180°. The second intersection

is determined by
a, = 180°—23.578° = 156.422°
For the first intersection,

a (rad) = 17:70 x 23.578 = 0.411

L_e_ o4
1= = 377 =1. | ms
For the second intersection,

a (rad) = — x 156.422 = 2.73
180

a 2.73
=——="17.24ms

t, = =
2 377

w

PHASE RELATIONS

A
v(V)
4 _____________
|
|
I
|
|
I .
0 « 90° a, 180°
h 5}

If the waveform is shifted to the right or left of 0°, the expression becomes

4, sin(@r = 0)

where 8 is the angle in degrees or radians that the waveform has been shifted.

A m

l 0

Qr +

VIR

—A,,sin6 /

Example:

=3 |

What is the phase relationship between the sinusoidal waveforms of each of the following sets?

a. v = 10sin(wt + 30)
i = 5sin(wt + 70)
i leads v by 40°, or v lags i by 40°.

k

wt
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b.i = 15sin(wt + 60)
v = 10sin(wt — 20)

i leads v by 80°, or v lags i by 30°.

Remove Watermark Now

-— 80°

_m
AVERAGE VALUE
For half wave rectifier
1 s
Vo = - ]0 v(t) dt
1™ . 2V,
Vo = —f Vi, sin wt dwt = — = 0.636V,
), T
Example:
Determine the average value of the waveforms
L Vl
(Square wave)
10V
0 1 2 3 4 !-(_ms)
-10V

EFFECTIVE Root Mean Square (rms) VALUES

1 21
o - 2
Voms = |5 fo v2(¢) dt

1 21
Vims = EJ V2 sin? wt dwt =
0

Example:

= 0.707V,,

SilsS

Find the rms values of the sinusoidal waveform in each part

b/ (mA) 47 (mA)

12

>/ —
0 \/15 0 1s 2s

|
[—
2
T

IV,J

14V

4

-6V

AV

169.7V

t (ms)
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Remove Watermark Now

RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT

Basic of Electrical Engincering.
Scnnsoidal sHternating
Resistor
Let v(t) =V}, sinwt
v(t V, sin wt
i(t) = ( ) B = I, sin wt
Vm
L, =—
m™ R

In addition, for a given i(t) = I,,, sin wt,

v(t) = RI, sin wt =V}, sin wt
V., =RI,

Example:

~N=

m

n

A

The voltage across 10 Q resistor is 100 sin377t, sketch the curves for the voltage and current.

¥, = 100V}

Iy = 10A

Example:

The voltage across a resistor is indicated. Find the sinusoidal expression for the current if the resistor is 10

Q. Sketch the curves for v and i.
a. v =100 sin 377t
b. v =25sin(377t + 60°)

Inductor
diy,
Ld_ = Lwl,, cos wt
=1}, co Vpn sin(wt 4+ 90)
Vi = Lwl,,

——»i; = [, sinwt
O
+
Lv
O

for an inductor, v, leads i_ by 90°, or i_ lags v, by 90°.
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L: vy leads i; by 90%
Vi
Vm - ;
!
L, 3
\ 7 T
2 90° 2

Reactance X,

|74 wLlI
X, =—=—"=uL
P
Example:

The voltage across a 0.5-H coil is provided below. What is the sinusoidal expression for the current?
v = 100 sin 20t

Xp=wL=20x05=100Q

Y
i= X—msin(ZOt —90) = 10sin(20t — 90)A
L

Example:

The current through a 0.1-H coil is provided. Find the sinusoidal expression for the voltage across the coil.
Sketch the v and i curves.

a. 1 =10 sin 377t

b.1=7sin(377t-70°)

Capacitor
— i = ?
O

. dve
ic = CW = CwV,, cos wt
ic = I, coswt = I, sin(wt + 90) 4
I, = wCV, C7~ Vo =V, sinwt
Reactance X, N
o Vm_ 1

I, wCV, oC o

for a capacitor, ic leads vc by 90°, or vc lags ic by 90°.
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C: icleads v by 90°.

Example:

The voltage across a 1-yF capacitor is provided below. What is the sinusoidal expression for the current?

Sketch the v and i curves.
v = 30sin400t

A

Ve

Solution \ v, =30V
1 1 |
Xe=—= = 25000 ic
wC 400x1x10-6 I, = 12mA——=
Vo _ 30 g
= —_— — = i — o) o
m=wc 2500 <M RN 2

v = 125in(400t + 90)

Example:

i leads v by 90°.

The current through a 100-mF capacitor is i =40 sin(500t - 60°). Find the sinusoidal expression for the

voltage across the capacitor.

Example:

For the following pairs of voltages and currents, determine whether the element involved is a capacitor, an
inductor, or a resistor, and determine the value of C, L, or R if sufficient data are provided :

a. v =100 sin(wt - 40°)
i =20 sin(wt - 40°)
b. v =1000 sin(377t - 10°)
i =5sin(377t - 80°)
c. v=500 sin(157t - 30°)
i =1sin(157t - 120°)
d. v =50 cos(wt - 20°)
i =5 sin(wt - 110°)

AVERAGE POWER and power factor

Let we have

v =V, sin(wt + 6,)

i = I, sin(wt + 6;)

then the power is defined by

p = vi =V, sin(wt + 6,) ,, sin(wt + 6;)
Yl cos(6, — 6;) —

m-'m

p= cosQwt + 6, + 6;)
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Vo, L Vo, L
p =—="cos(6, — 6, = mzmcose
power factor = F, = cos 6 = p __Pp __ P

Vil -~ Vi I Vegrlegy
2 22

Resistor

lem lem mim VeffVeff Veffz 2

= =10 "™ _y .= - — L..2R

p cos(0) = — Tz Verrlers B o= lers
Inductor

Vo, L
p= mzm cos(90) =0
Capacitor

Vol
p =—""¢o0s(90) =0
Example:

Find the average power dissipated in a network whose input current and voltage are the following:
i =5 sin(wt + 40°)
v =10 sin(wt + 40°)
Example:
Determine the average power delivered to networks having the following input voltage and current:
a. v =100 sin(wt + 40°)
i =20 sin(wt + 70°)
b. v =150 sin(wt - 70°)
i =3 sin(wt - 50°)
Example:
Determine the power factors of the following loads, and indicate whether they are leading or lagging:
a. v =50 sin(wt - 20°)
i = 2 sin(wt + 40°)
b. v =120 sin(wt + 80°)
i =5 sin(wt + 30°)
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COMPLEX NUMBERS

RECTANGULAR FORM

The format for the rectangular form is

C=X+jY
X =Z cos@

y =Z sinf
Example:

Sketch the following complex numbers in the complex plane:

a.C=3+j4
b.C=0-j6
c.C=-10- j20
POLAR FORM

C=12.06

Y
7 =+X%2+Y2 9=tan_}

Example:

1

Sketch the following complex numbers in the complex plane:

a. C=5430°
b.C=74£-120°
c. C=—4.2,60°

Example:

Convert the following from rectangular to polar form:

a C=3+j4
b. C=-6+)3

Example:

Convert the following from polar to rectangular form:

a. C=10z40°
b. C=10£230°

Example:

Find the input voltage of the circuit shown below when the frequency is 60 Hz

v, = 50 sin(377t + 30)

v, = 30 sin(377t + 60)

10
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Solution:

50
v, = —=12430 =35.35230V = 3061V + j17.68V

V2

30
vp = 5460 = 2121460V = 1061V + 1837V
Applying Kirchhoff’s voltage law, we have

Rectangular form

E, =v,+v,=3061V+ j17.68 +10.61V + j18.37 =41.22V+ j36.05V
Polar form

E;, = 54.76 V£41.17°V

Time domain

E;, = V2(54.76) sin(377t + 41.17) = 77.43 sin(377t + 41.17)

30°
41.17°

- 60—

Example:

Determine the current i, for the network

iy = 80 X 1073 sin w?

—_—
ir = 120 X 107 sin (ot + 60°)
R f 5
‘: H
Solution:
Applying Kirchhoff’s current law, we obtain
iT = i1 + 1:2
p=1Ir—1
120 x 1073

ir =120 x 1073 sin(wt + 60) = 260 = 84.84260 mA = 42.42 + j 73.47 mA

V2

80 x 1073
——— 20 = 56.5620 mA = 56.56 + j 0 mA

V2
i, =iy —i; = —14.14 4+ j 73.47 mA = 74.82 mA~£100.89° = 105.8 x 1073 sin(wt + 100.89) A

i; =80 X107 3sinwt =

11
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i(mA)
I =ir—-1n
T
120
105.8 iy
80
% 27 27
. .
0° ka
100.89°

Find the sinusoidal expression for the applied voltage e for the system
v, = 60sin(wt + 30)
vy, = 30sin(wt — 30)
v, = 40 sin(wt + 120)

Find the sinusoidal expression for the current is for the system
i; =120 x 1073 sin(377t + 180)

i, = 120 x 1073 sin(377t) — l_l [ _

. ; i i 73

l3 - 211 l
l§ 2

MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS

j=V-1

j=-1

1 .

-—= )

]

12



1 Plase

Basic of Electrical Engineering.

Sinwsoidal Alowati
Complex Conjugate
The conjugate or complex conjugate of a complex number can be found by simply changing the sign of the
imaginary part in the rectangular form or by using the negative of the angle of the polar form. For example,
the conjugate of C =2 +j3is 2 —j3
The conjugate of C = 2£30° is 22 — 30°

Addition
To add two or more complex numbers, simply add the real and imaginary parts separately. For example, if
Cl = X1 +]Y1 and Cz = XZ +]Y2
ThenC1+C2:X1+X2 +](Y1+Y2) 6-‘

C,+C,

Example:

AddC, =2+ j4and C, =3+ /1

Subtraction
In subtraction, the real and imaginary parts are again considered separately. For example, if
C;=X,+jY;and C, =X, +jY, j
ThenC; —C, =X, — X, +j(Y; - Y,) |

Example:

Subtract C, = 1+ j4and C; =4 + j6
Subtract C, = =2+ j5and C; =3 +j3

Multiplication

To multiply two complex numbers in rectangular form, multiply the real and imaginary parts of one in turn
by the real and imaginary parts of the other. For example, if

C,=X,+jand C, =X, +jY,

Then C; X C, = X, X, — V1Y, + j(X1Y, + X,¥;)

Example:

Find C1.C2if

Cl=2+j3andC2=5+j10

In polar form, the magnitudes are multiplied and the angles added algebraically. For example, for
C;=2Z40,and C, = Z,26,

Then C,.C, = 217,26, + 0,

Example:

FindC1.C2if (C; =5«20and C, = 10430

13
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Division
To divide two complex numbers in rectangular form, multiply the numerator and denominator by the
conjugate of the denominator and the resulting real and imaginary parts collected. That is, if
C,=X,+jY;and C, =X, +jY,

Then

Ci_ Xitj% _ Xa4j1 % Xo=JYs _ XaXotVi¥o | XpV-Xi¥
C,  Xo+jYy, Xo+jYy  Xo—jY, X2+Y7 X2+Y}
Example:

Find C1/C2if

Cl=1+j4andC2=4+j5

14
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Series and Parallel ac Circuits
Resistive Elements

Vin
R
IR

i=1

m

I,

Vin

In phaser form,

v =V, sinwt = V20

sin wt

v =V, sinwt

Where V = 0.707V,, O
Applying Ohm’s law and using phaser algebra, we have
V.0

] = —
R20 ) )
So that in the time domain,

V
i = \/Eﬁsinwt

Example:
Using complex algebra, find the current i for the circuit shown below. Sketch the waveforms of v and i.
o._>
l
+
5(2§ v = 100 sin wt
Solution
v = 100sinwt = 70.7£0 P
J = V.0 _ 70.7£0 — 7y 1
© Zgpe0 520 0 7 100 V-——= ,
i = V2 x 14.14 sinwt = 20 sinwt A
20 A ozt - %T 2
0 o wl
2

Inductive Reactance

The voltage leads the current by 90° and that the reactance of the coil XL is determined by wL.

v = Vysinwt = V20 Cj—-
By Ohm’s law, +
I=X]L/280=XKLA—9O X; =wL§ v =V, sin wf
so that in the time domain,

o

V
i = V2 —sin(wt —90)
X


http://cbs.wondershare.com/go.php?pid=5261&m=db
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ZL = XL490

Example:

Using complex algebra, find the current i for the circuit shown below. Sketch the v and i curves.

C_—“'
Solution: I
v = 24sinwt +
In polar form X =30 v = 24 sin wt
V =16.96820 _
[— \"/ _ V20 _ 16.96820 656 AL — 90
~Zp X290 3290 7
o
i =V2(5.656) sin(wt — 90) = 8 sin(wt — 90)
A \
24 V--—-2 v
\ 16.968 A i BApfmmmm=m———z i , ,
5.656A u A% * /’i % T %ﬂ. 2 %17 wt
__T___ I Leading —| 90° &

Example:

Using complex algebra, find the voltage v for the circuit shown below. Sketch the v and i curves.

Capacitive Reactance

i = Ssin(wr + 30°)
o

_—

XL = 4!)

: . _ 1
The current leads the voltage by 90° and that the reactance of the capacitor Xc is determined by —

v =V, sinwt

In polar form

V="20

l_V_ veo o V490
Zc Xc2—-90 X,

V

i = V2 —sin(wt + 90)
Xc

Ze = Xp2 — 90
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Example:

Using complex algebra, find the current i for the circuit shown below. Sketch the v and i curves.

solution: 0
-—>
I
v = 15 sinwt "
In polar form
V =10.605 20 Xe=2Q /T~ v = 15sin wi
[— V. Vz0 1060520 £ 303 A290 _
Zc Xc2—90 224-90
. v, . o
i = \/ix—sm(a)t +90) = 7.5 sin(wt + 90)
Cc
4/ 15 VE-mmmv
75A ‘

Leading

0
l v,
T
I

—10.605 V—=
|

Example:

<o

wt

(SIS

Using complex algebra, find the voltage v for the circuit shown below. Sketch the v and i curves.

Impedance Diagram

Now that an angle is associated with resistance, inductive reactance, and capacitive reactance, each can be
placed on a complex plane diagram. For any network, the resistance will always appear on the positive real
axis, the inductive reactance on the positive imaginary axis, and the capacitive reactance on the negative
reflect the individual and total impedance

imaginary axis. The result is an impedance diagram that can
levels of an ac network.

i = 6sin(wt — 60°)

\
/I
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X; 290°

~90°

/-90° R0

+ v

| X £90°

SERIES CONFIGURATION
The overall properties of series ac circuits are the same as those for dc circuits. For instance, the total
impedance of a system is the sum of the individual impedances:

ZT:Z:l‘l‘Zz‘l‘“'..‘l‘ZN

Example:
Draw the impedance diagram for the circuit shown below, and find the total impedance.

o Wy )

R=4Q X, -80Q

—_—

Zr

o
Zr=7Z,+Z,=R+jX, =4+ )8=28944263.43°Q

X, =80 A

ty

R =40
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Example:
Determine the input impedance to the series network shown below. Draw the impedance diagram.
Z, Z, Z;
I(
© Wy 000 Y
R=60Q X, =100 X-=120Q
L, —
e
R-L R=30 X, =40
+ T — tovpo—
e = 141 .4 sin wf [
_ -
Phasor Notation 3
e = 141.4 sinwt
E=10020
Zr=7Z,+Z,=R+jX, =3+ j4 =5£53.13°Q
E 10020

=—=————=120£—53.13°A
Zr 5£53.13°

Vg =1Zz =3 X204 —53.13° = 6024 — 53.13° = 36 — j48 V
V, =1Z; = 4490 X 202 — 53.13° = 80£36.87° = 64 + j 48V

X, =40

6,=53.13°

+
\

| &

Y

R=30Q) +
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Power: The total power in watts delivered to the circuit is
pr = Elcosf; = 100 X 20 cos 53.13° = 1200 w
where E and | are effective values and 6; is the phase angle between E and I, or
pr =I?R =20% X3 =1200w
where | is the effective value, or, finally,
pr =pr +p, = 60 X 20 cos0 + 80 X 20 cos 90 = 1200 w

Power factor: The power factor Fp of the circuit is cos 53.13° =0.6 lagging, where 53.13° is the phase angle
between E and I.
p IR IR R R

9 == Y — = — = — = —
OUTETE TE EN 7
R-c _ X. =380
Phasor Notation R WiQ C %

I\

i =7.07 sin(wt + 53.13°) + oy - L
I =5253.13° A Ve
ZT:ZI+ZZ:R_jXC:6_j8:104—53.13°,Q ‘ - ' o
E =1Zy = 54£53.13° x 104 — 53.13° = 50£0° i = 7.07 sin(wt + 53.13°)

.

Vg = IZg = 5253.13° x 620° = 30£53.13 V
V, =1Z; = 54£53.13° X 84 — 90° = 404 — 36.87° V
'Y

Y

Y
A

Time domain: In the time domain,

e =2 x 50 sin wt = 70.7 sin wt
Ve = V2 x 30 sin(wt + 53.13°) = 42.42 sin(wt + 53.13°)
Ve = V2 x 40 sin(wt — 36.87) = 56.56 sin(wt — 36.87)
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Ve

Power: The total power in watts delivered to the circuit is

pr = Elcosf; = 50 X 5c0s53.13° = 150 w

where E and | are effective values and 6; is the phase angle between E and I, or
pr =I1?R=52x6=150w

pr =Pr +Pc = 30X%x5c0os0+ 40 X 5cos90 = 150w

Power factor: The power factor of the circuit is

Fp = c0s53.13° = 0.6 leading

RLC

ZT:ZR+ZL+ZC:R+jXL_jXC X I/
Zr =3+ j7—j3 =3+ j4=5253.13° Wy 000 I\
VR

+

e= 70.7 sin wr@ il

Impedance diagram
- B _ 5020
~ Zp 5£53.13°
Vg =1Zg =3x102-53.13°=302-53.13°V

V., =1Z;, =7490 X102 —53.13°=70436.87°V
Ve=1Zc =324-90x%x102£—-53.13° =302 —-143.13°V

=104 — 53.13°A

Phasor diagram: The phasor diagram of Fig. 15.38 indicates that the current I is in phase with the voltage
across the resistor, lags the voltage across the inductor by 90°, and leads the voltage across the capacitor by
90°.

Time domain:

i =2 x 10 sin(wt — 53.13°) = 14.14 sin(wt — 53.13°)

Ve = V2 x 30 sin(wt — 53.13°) = 42.42 sin(wt — 53.13°)

V, = V2 x 70 sin(wt + 36.87) = 98.98 sin(wt + 36.87)

Ve = V2 x 30 sin(wt — 143.13°) = 42.42 sin(wt — 143.13°)

Power: The total power in watts delivered to the circuit is

pr = ElcosO; = 50 X 10 cos53.13° =300 w

or

pr =I?R =102 x3=300w
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pr =pPr + v, +0c =30%X 10 cos0 + 70 X 10 cos90 + 40 x 10 cos 90 = 300 w
Power factor: The power factor of the circuit is
Fp = c0s53.13° = 0.6 leading

F R 3
p = = = = 0.6leading
Zr 5
bJ
A;
; =70 4
X -Xe=4Q |T=—————
I
S/
'y |
A5 |
I
> Or =53.13°
L} H
+ R=3Q +
Xo=3Q

70,70V === e

Ve
I Y AYY L Sy Ay <o

c"'— y
1 Al
Y B [
) ',I o I 3 wi
| 1
! 1
| 1
A
1
36.87° I
6.8 — 900
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VOLTAGE DIVIDER RULE
The basic format for the voltage divider rule in ac circuits is exactly the same as that for dc circuits:

Example:
Find the voltage across each element of the circuit shown below
R=6Q X, =90 XCI; 170
\ g 00—
- TV - TV o4y, -
50V £30° A\
_ :
|
|
3
-
H.wW

For the circuit shown below,
1- Calculate I, VR, Vi, and Vcin phasor form.
2- Calculate the total power factor.
3- Calculate the average power delivered to the circuit.
4- Draw the phasor diagram.
5- Obtain the phasor sum of Vg, V|, and V¢, and show that it equals the input voltage E.
6- Find Vg and V¢ using the voltage divider rule.

€; = 200puF..€, = 200 uF
Ry =60 Ry=4Q L, =005H L, =0.05H

MWW 00—

|(
I\
N -

VR Vi Ve
e = \/2(20) sin 377t @ i

PARALLEL ac CIRCUITS

In ac circuits, we define admittance (Y) as being equal to 1/Z. The unit of measure for admittance as
defined by the SI system is siemens, which has the symbol S. Admittance is a measure of how well an ac
circuit will admit, or allow, current to flow in the circuit. The larger its value, therefore, the heavier the
current flow for the same applied potential. The total admittance of a circuit can also be found by finding the
sum of the parallel admittances.

Y, = — Y, = — Y; = — Yy = =

1 1.1 .1
Zr 7y Z Zy

YT:Y1+Y2+"'+YN
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For pure resistor, conductance is the reciprocal of resistance, and

1 1
Y = Z = R0 = G£0 (siemens,S)

The reciprocal of reactance (1/X) is called susceptance and is a measure of how susceptible an element is to
the passage of current through it. Susceptance is also measured in siemens and is represented by the capital
letter B.
For the inductor,
v 1 1

L™z, 7 X,290
Note that for inductance, an increase in frequency or inductance will result in a decrease in susceptance or,
correspondingly, in admittance.
For the capacitor,

1 1

" Ze Xc2—90
For the capacitor, therefore, an increase in frequency or capacitance will result in an increase in its
susceptibility.
For parallel ac circuits, the admittance diagram is used with the three admittances, represented as shown in
Figure below.

Note from this figure that the conductance (like resistance) is on the positive real axis, whereas inductive
and capacitive susceptances are in direct opposition on the imaginary axis.

= B; 2 —90 (siemens,S)

Yo = Bc£90 (siemens, S)

A },
A B Z£90°
G Z£0°
> -
+
Y B; £-90°
Example:

For the network of Fig. shown below:
a. Find the admittance of each parallel branch. ©
b. Determine the input admittance.

c. Calculate the input impedance. Y,
d. Draw the admittance diagram.

Rgﬂl& 8O Xo =120 Q)

Z]'
—_—
o}

Solution:

a. Y :G/_OOZL/_OC’:LLOo

COR R 50

=02S20°=02S+0

10
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Y, =B, £-90° = L £-90° = L £-90°
L X 80
=0.1258S £-90°=0—-;0.125S
1 1
Yo =B-490°=— £90° = —— £90°
ce Xe 200

=0.050 S £+90° = 0 + j0.050 S

b Yy=Ye + Y, + Ye
=(02S +,0)+ (0—j0.125S) + (0 + j 0.050 S)
=02S—;0.075S = 02136 S £ —20.56°

3 1
T 0.2136 S £ —20.56°

c. Zr = 4.68 ) £20.56°

or
Ll L
7.7, + L, 20+ 27,
B (5.0 20°)(8 0 290°)(20 Q £ —90°)
T (50 20°)(8 0 £90° + (8 Q 29020 Q £ —90°)
+ (50 2020 Q £—90°)

;=

800 Q) £0°
40 £90° + 160 £0° + 100 £ —90°

800 O _ 8000 _
160 + 740 — ;100 160 — j 60 J
_ 800 O
170.88 £ —20.56 Y.
4.68 Q /20.56° Y,

+

d. The admittance diagram
20.56°

L_ 0.2136 S

o
|
~*

Example:

For the network of Fig. shown below:

a. Find the admittance of each parallel branch.
b. Determine the input admittance.

c. Calculate the input impedance.

d. Draw the admittance diagram.

O

Y7

—
R§209 XLEM)Q
ZT

—_—

O

11
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PARALLEL ac NETWORKS

e

e

z‘_:__ 70.7 sin wt a
- ‘iR iiL
e = V(100 sin(er + 53.13%) RS3330 3 SRB0 . F=330
%’- a
+ LIR “1
E = 100V.253.130 RS3330 3 SRBO x. AR50
—

Y',r and Z',r
YT: YR + YL + YC - GLOO + B‘T_ 47900 + BC 4900
1 1
= ° —+ — © +
3.330) £0 1.43 Q) £=90 3.33Q

=03S20°+0.7S £-90°+ 03 S £90°

=03S—j07S+,03S
=03S—;04S=05S,—-53.13°

1 1

L= =20 £53.13°

Y, 05S/-5313°
E

£90°

I= 7 EY; = (100 V £53.13°)(0.5 S £—=53.13°) = S0A £0°

T

IR! ILr and lc
I, = (E £6)(G 20°)

= (100 V £53.13°)(0.3 S £0°) = 30 A ~£53.13°

I, = (E £0)(B, £—90°)

= (100 V £53.13°)(0.78 £—-90°) = T0 A ~—36.87°

1. = (E £6)(B £90°)

= (100 V £53.13%)(0.3 S £2+90°) = 30 A ~£143.13°

Kirchhoff’s current law: At node a,
I_IR_IL_IC‘-:O
Phasor diagram

Admittance diagram:

J

BeZ90° = 038 290°

GZ0°=038S20°

BL_BC

12

53.13°

___________ Yr =058 £-53.13°

By £-90° = 0.7S £-90°

Remove Watermark Now
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Time c_iomain:
i = V2(50) sin wt = 70.70 sin wt
in = V2(30) sin(wr + 53.13°%) = 42.42 sin(wt + 53.13°)
i; = V2(70) sin(w? — 36.87°) = 98.98 sin(wt — 36.87°)
ic = V2(30) sin(wr + 143.13°) = 42.42 sin(wr + 143.13°)

A plot of all the currents and the impressed voltages appears ain following figure

Power: The total power in watts delivered to the circuit is

Pr = EIcos 0 = (100 V)(50 A) cos 53.13° = (5000)(0.6)
= 3000 W

or Pr=E°G = (100 V)’(0.3 S) = 3000 W
or, finally.

P.T = PR + PL + 'PC
= Elcos g + EI; cos 0y + EL cos f¢
= (100 V)(30 A) cos 0° + (100 V)(70 A) cos 90°
+ (100 V)(30 A) cos 90°
=3000W+0+0
= 3000 W

Power factor: The power factor of the circuit is
F, = cos 07 = cos 53.13° = 0.6 lagging
G _03S

F,=cosltr=— =

Y, 05sS = 0.6 lagging

Impedance approach: The input current I can also be determined
by first finding the total impedance in the following manner:

B Z:Z:Zc
Zil; + LiZc + Zile

and. applying Ohm’s law, we obtain

=2 () £53.13°

Zr

e 20
(- E _ 100V 283130 o0
Zr 2075313

13
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Example:

For the circuit shown below, determine the Iz and I_ , phasor and admittance diagrams, time domain
representation, power and power factor.

LI a
e = \V/2(20) sin(wr + 53.13°) R§3_33 0 J:ng.ﬁ!l

L

Example:
For the circuit shown below, determine the Iz and Ic , phasor and admittance diagrams, time domain

representation, power and power factor.

a

’ IR yic

i = 14.14 sin wt e R § 1.67 Q) Xe T~ 1.25 Q)

L

CURRENT DIVIDER RULE
The basic format for the current divider rule in ac circuits is exactly the same as that for dc circuits; that is,

for two parallel branches with impedances Z1 and Z2 as shown

Z

— I,

Example:
Using the current divider rule, find the current through each impedance of following Figure.

o,
ZJ0r  _ (40 £90°)20A L0°) _ 80AL90° - . I
Iz = = = S 2 R ¥ =
Zx+Z, 30.0°+40790°  5/5313° I1=20A70
= 16A £36.87° RS30 XL§4 Q
-
Lo Zilr (3O L0Q0A L0°) _ GOALO®
L Zat 7, 50 253.13° 5 /53.13°
O
= 124 £ —53.13°

14
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Example:
Using the current divider rule, find the current through each parallel branch of Figure shown below.

R X;

— M0

I, = 5A / 30 10 8Q
..YC
I(
I\
20

EQUIVALENT CIRCUITS

In a series ac circuit, the total impedance of two or more elements in series is often equivalent to an
impedance that can be achieved with fewer elements of different values, the elements and their values being
determined by the frequency applied. This is also true for parallel circuits.

s o Ll _ (50290100 290°) _ 50|£0°
T Ze+Z, 5Q/-90°+10Q2,90° 5,90

=10Q £-90°

J R=1920 X =1440Q
R=30 —) E

- (40 2903 Q £0°
Z,+Z, 4Q/90°+3Q,0°

= 122907 5 400 236870
5 /53.13°

= 1.920 Q) + j 1.440 Q)

15
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Basic of Electrical Engincering.

Stuncoidal Hternating
Example: _ 2, X, =60
For the following network AA—— L

a. Calculate the total impedance Zr. + :
b. Compute 1 E= 100\:’40"'@7: ) R3§SI)
¢. Find the total power factor. ) e T"’“
d. Calculate I, and I-.

e. Find the average power delivered to the circuit.

Example:
For the following network

a. Compute L.

I Ry =80 X;_:=3!1
b. Find I;. I,. and I;. — T P W —
¢. Verify Kirchhoff’s current law by showing that . “ 2, . 8
I:I1 - I}-|-]:3 E=200V£0°® Ry=101) Xe 90
B g X, X400
d. Find the total impedance of the circuit. “' - T

16
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Scnnsoidal sHternating
Tutorial:
1-Find the current i for the elements and sketch the waveforms for v and i on the same set of axes.

i i
e e
- - -
>3 v = 21sin(wr+ 10°) X 70 v = 49 sm(wt+ 70%) Xe AT=1000) v = 25 sm(wt - 20°)
O—
(@) ) O]
i—-
[ S——
- - -
v=4x107sin(@-120°) 7 = 01HSy = 16 sin(377¢+ 60°) C=2puF-T~V = 120sinwt f=5kHz
o—
(d) (e) ®

2-Calculate the total impedance and express your answer in rectangular and polar forms, and draw the
impedance diagram.

R=30 R =20 ¥c= 060 Ry = 1kQ Az, = 3K
Zr Zr Zr
4Q 80 S 4kO
g w3 n3
o—)— o o——T0
Xe =70 Xy, =7k0)
(a) (b) (©

3-For the circuit shown below

a. Find the total impedance Zr in polar form.
b. Draw the impedance diagram. R=38Q X =60Q
c. Find the current I and the voltages V; and V; in pha- AMN
sor form. - - 7 v,
d. D,raw the phasor diagram of the voltages E. Vz. and E = 100V £ 0° ll
V;. and the current I.
Verify Kirchhoff’s voltage law around the closed loop. -z
Find the average power delivered to the circuit. =
Find the power factor of the circuit. and indicate =
whether it is leading or lagging.
Find the sinusoidal expressions for the voltages and
current if the frequency is 60 Hz.
i. Plot the waveforms for the voltages and current on the
same set of axes.

4-Repeat problem 3 for the following circuit, replacing V with V¢ in parts (c) and (d).
R=10Q Xe =300

A 4
N AL LN
Vz " Ve
E =120V £20° Il
Tz
—

17
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Basic of Electrical Engincering.

Wethods of +nalysis
Methods of Analysis

SOURCE CONVERSIONS
When applying the methods to be discussed, it may be necessary to convert a current source to a voltage

source, or a voltage source to a current source. This source conversion can be accomplished in much the
same manner as for dc circuits, except now we shall be dealing with phasors and impedances instead of just

real numbers and resistors.

T
- E
I == Z
Z
Z
! a’ a'
Voltage source Current source

Example:
Convert the voltage source to a current source.

a Source conversion

:E: 100V £0° E =100V £ 0°
Z 50 /£53.13° N
=20A £ -53.13° I=20A /-53.13° 30
R< 30 z
, = 40
LS 40
Example: )

Convert the current source to a voltage source.

a a
O ZZ, (Xo 2 —90%)(X, £90°) T +
= E=120v 2 =00 (M

Lot —j Xe+j X
40290960 290°) 240 L0 z ,
—40+60 2 £ 90°
=12 Q / —9(° [Fig. 17.7(b)] I=10AZ 00°<T) XLét’vﬂ X?=4D »
E=1Z = (10 A 260°)(12 Q) £ —90°)
=120 V.L-30°

[ xc=120

Al

Oq'

L
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Basée of Electrical Engineering.

Methods of Analysie
MESH ANALYSIS
Example:

Using mesh analysis, find the current I,

;=20 J__YC =10
§R =4
E1=2VZO” t:=6¥'400
Solution:
Z1:+jXL:+j29 _ +
Z.=R=40Q ) e .
Z;=—jXc=-j1Q 1 3
E1 =2V 20° + Z, _
T =
J— O —
E,.=6V 20 E, T E,
— Ilv I2 L] —
+E; —LZ, - Z,(I, - I,) =0 —
—L(L-1,)-LZ; —E, =0
or El_ Ilzl - 1122 + 1222 = 0
_IZZZ + I]Zg — 1223 —2 Ez =0
so that I(Z, + Z,) - LZ, = E,

L(Z, + Z;) —1,Z, = —E,

which are rewritten as

WZ, + Z,) — LLZ, =E,
-1,Z, + L(Z, + Z5) =

|
|
5

Using determinants, we obtain
| E1 _2.2
_E2 Zg + 2.3
Zl + Zg _2,2
_Zg Zg + Z3
_ E(Z, +Z;) - E5Z,)
(Zy + Z5)(Zy + Z3) — (Zo)°
_ (E,—E)Z, + E/Z;s
7.2, + 7,7; + 7,Z;

11:

Substituting numerical values yields

RV-6VAY)+2V)Y—10)

I —
L (H2Q)@E Q)+ (H2O)(—20) + A Q)(—j2Q)
__ —16—j2 _ -16-j2 _ 16.12A £—172.87°
j8—j2—j4 2+j4 4.47 £63.43°

=3.61A £-236.30° or 3.61A ~£123.70°
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Basic of Electrical Engincering.
Methode of rnalyie
Example:

Using mesh analysis, find the current I,

6 ()

+
E, =8V Z 20°®

Solution:
Z, =R +jX;, =10+;2Q
Z,=R, — jXo=40—j8Q -
Z;=+jX,, =+j6Q Zl+ 7ZZ+ ;
E, =8V £20° o Sk
E,= 10V £0° i VT

=

L(Z,+Z,) - LZ,=E, + E,
L(Z, +7Z;) - 1,Z, = —E,

Il(Zl + Zz) - 12Z2 = El + E2
—LZ, + L(Z, +Z;) = —E,

Z,+7Z, E, +E,

I = -7, -E,
Y+ 7, <7,
_Zz 22 + Z3

—(Z, + Z,)E, + Z,(E, + E))
(Zy + )2y + L) — 13
7,E, — Z.E,
22 + 1,2 + 7.7,

- (40— j8MEBV £20°) — (1Q +,;20)(10V £0°
O+ 20)E0 -8+ (1QH20)(+6Q) + (4Q — 8O+ 6Q)
_ (4-j8)(7.52+ 7274 — (10 +;20)
20+ (j6 — 12) + (j 24 + 48)
_ (520 —/49.20) — (10 +20) _ 42.0 —j69.20 _ 80.95A £ —58.74°

56 + 7 30 56 +730  63.53 £28.18°
=1.27A £—-86.92°
NODAL ANALYSIS

Example
Determine the voltage across the inductor for the }?etwork .
1 2
My Wy
0.5k 2kQ

+
E 10 kQ =< 5kO =
12V 4O°® Ay % Xe T (D 4mA
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Basic of Electrical Engincering.
Wethods of +nalysis
Vv,
Zl
+
=
For the application of Kirchhoff’s current law to node Vi:
SL=31,
0=1+1L + I,
"Tl - E "Tl ‘371 - "Tz
+ + =0
Z, zZ, Z,
vl L 1] ([L]_E
7, 1. I | Zs Z,
For the application of Kirchhoff’s current law to node V5:
0= 13 + 14 +1
L A
7, 7,
Rearranging terms:
I LS S S B S
o 25 Z, Z;
Grouping equations:
v+ Ly Ly L -E
Zl Zg Zg, Z3 Zl
1 1 1
v —V,| = +=|=
7] 1z
1 | | 1 1 |
— + + == + + =25mS £—-2.29°
Z, 7, Z. 05kQ  j10kQ  2kQ -
1 1 1 1
_— — = + = (.53 .80°
7 T 7" 3k T Tska - 0530 mS £21.80
and
V,[2.5mS £—2.29°] — V,[0.5 mS £0°] = 24 mA £0°
V,[0.5 mS £0°] — V,[0.539 mS £21.80°] = 4 mA £0°




t° Clase

Basic of Electrical Engincering.
Wethods of +nalysis
with
24 mA £0° —0.5mS £0°
v = 4mA 20° —0.539 mS /21.80°
Y125 mS £ -2.29° —0.5mS £0°
0.5 mS £0° —0.539 mS £21.80°

(24 mA £0°)(—0.539 mS ~21.80°) + (0.5 mS £0°)(4 mA £0°)

- (2.5mS £—-2.29°)(—0.539 mS £21.80°) + (0.5mS 20°)(0.5mS 20°)
—12.94 X 107°V £21.80° + 2 X 10°°V £0°

—1.348 X 107° £19.51° + 0.25 X 107¢ £0°

—(12.01 +74.81) X 10°°V+2x10°°V

—(1.271 +0.45) X 107+ 0.25 X 10°°

—10.01V — 481V _ 11.106 V £—154.33°

—1.021 —;0.45 1.116 £—156.21°

V, =995V £1.88°

A-Y, Y-A CONVERSIONS

ZpZ
Z1 =
Z,+ 21z + Z-
1.7
Z,+ 71z + Z-
7.7
7Z,+ 71+ Z,
7.2, + 1.7, + 7,Z,
Z, = 7
)
7.7, +71,1; + 71,1,
Z,= 7
1
2.2, + 2.7 + 7,7,
ZC = Z
3

Remove Watermark Now
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Basic of Electrical Engincering.
Methode of rnalyie
Example:

Find the total impedance Zt of the network

(o3

—

Zr

Zp=—j4 Z,=-j4 Zo=3+j4
Z:Z. (—j 4GB Q+,/4Q)

2= Zo+Zy+Ze (4 +(—j4Q)+(BQ+,4Q)
_(4£-90°)(5 £53.13°) 20 £—36.87°
3—j4 5 £-—53.13°
=40 ,1613°=3840Q+,1.110Q
7. = YAV _ (=j4HEQ+;40)
L, Ly + L 5Q £—53.13°
=40 /16.13°=3840Q+;1.11Q
7. = (7 _ (=74 M)(—j4Q)
Y S S A 50 £-53.13°
= % =320 £-12687"=—=1920 —j2.56 Q)
Replace the A by the Y (Fig. 17.49): © ?’
Z,=3840+;1.110 Z,=3840+;1.11Q T Z

Z;=-1920-;2560Q 7,=20Q

ey
1 3

Impedances Z, and Z, are 1 series:

Ly =7, +2,=3840+;1110+20=584Q0+;1.110Q
=5.940Q £10.76°

Impedances Z, and Z; are 1n series:

Zr,=7,+Z;=384Q0+,1110+30=6840+,1.11Q °
=6.93 0 £9.22°

Impedances Z7, and Zr, are in parallel:

7.7, (5.94 Q 210.76°)(6.93 Q) 29.22°)
2z, = Zo +Z;, 5840+ 1110 +6840+,1110
41160 £19.98°  41.16 ) £19.98°

1268 +7222  12.87 £9.93°
= 3150+ 0560

3.198 Q2 £10.05°

Impedances Z; and Zr, are in series. Therefore,

Zr=7s+Zy = 19202560 +3.150Q + ;056 Q
T=1230-7200=2350 £ -5841°
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Methods of Analysie
Tutorial
1-Write the mesh equations for the networks. Determine the current through the resistor Ru.
Ry
MW
g 1 Qé 10 200 200 100
é N § 20 1007=< +
10\ ZSO 60V £ 70° E; =40V £ 0° E =3V Z0°
an ma
@ i
60 R,
%
80 .
™~ 10 =20 E, =120V £ 120°

E, =60V £ 0° =100V £ 90°

2-Write the mesh equations for the network, and determine the current through the 10 kQ resistor.

20vVZ£0°
MW——("\
5\'400® gsm (D4um40°§mm
=
3-Write the mesh equations for the network, and determine the current through- the inductive element.

_IOVZO: 41O
O

+
6 mA £ 0° T V5§lkﬂ 0.1V, g6kﬂ

4- Determine the nodal voltages for the networks

2 ()

50

10 207~ CDI: = 5A/30°

=380

I, —3A40°<T> (l)l;—ﬁ,.xzsoo
40

I, = 0.6A 2 20°

IH—WW\—

It

i/ I\
I\ C o0

5Q 40 E;mn 40

E = 30V £50°

-
” 60 202 I = 0.04AZ£90° + EEIMI ZHEE ] I-08A270°
5 E - 50V 21200 (N\y
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Methods of Analysie
5-Determine the current | for the networks

2(
) [_“A--)

12Q 12 Q)
90 9 ()

N, o
E - 120\’£0°®Z‘T AMy E - 60\«'40°®ZT MWV—]
A Yr \/ Yr 120 4
3
80 60 %'Q g“l

P
~
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Basée of Electrical Engineering.

Hetworks Theonems
Network Theorems (ac)
SUPERPOSITION THEOREM
One of the most frequent applications of the superposition theorem is to electronic systems in which the dc
and ac analyses are treated separately and the total solution is the sum of the two. It is an important
application of the theorem because the impact of the reactive elements changes dramatically in response to
the two types of independent sources.
Example:
Using the superposition theorem, find the current I through the 4Q reactance (X.2)

ll A\'C—I—s 0
nguz
E, = 5VZ0°
_+_
|

E, =
Solution: I
Z = +X, =j4Q o [
Z,=+jX;,=/4Q . z
Z; = —jXc=—j30 B
Considering the effects of the voltage source E; =
7,7 4 O)(—j 3 12 Q)
L = 2 = (J. 4 ] A — ==;712.Q)
Z,+ Z; j4 —j30 Jj
=12 £-90°
;B 10VZee 10V 207
°1 Z2||3 + Zl _] 12 Q +]4 Q 8 Q /__900
= 125A 290°
and
I, _ ZSISI td d 1
= Z + 7. (current divider rule)
_ (30 125A) _3T5A _sosn g
j4Q—j30Q j1
Considering the effects of the voltage source E; , we have
Zm::%:*;tﬂ =j2Q zl Zl
E,  5V/Z0°  5V/0° . : )
L= Zo+z. 20-;30 10z-9¢ 40 Z u

I.31 F‘2
I'=—2=25A£90° Tr' L, .
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Vetworks Theorems

I — I/ . II’
=375A2-90° — 250 A £90° = —j3.75A — j2.50 A
= —j625A

I=625A/-90°

Example:
Using superposition, find the current I through the 6Q resistor.

I
000" Wy

Xi‘:6\(l R=06Q

+
E,—20V4300® I,C)ZALO“};:XCBQ

THE'VENIN’S THEOREM

Example:
Find the Thévenin equivalent circuit for the network external to resistor R
00 o—
X, =8Q
+
E = 10V £0° XC/'\2(1§R

Solution: Thévenin
Zy =jX.L =j8 Q. z, °
Zy = —jXc=—j20
Zg =22 10 567, 900 p

th =z, +7, j6 E=10\‘40°® Z,
By = =222 =20 _aa5, _4gov -

th = Zl + ZZ - j6 = 3994 - Thévenin

Z, o Z, 0

E @ z, E I I zZ “n

The Thévenin equivalent circuit is shown below

Zy, = 2.67Q £ -90°

ZTF!
. N X, = 2670
Ep, = 333V Z —180° @ R WP E, = 333V —150° @ R

2

-~




1 Clase
Basic of Electrical Engincering.

Vetwork Theorems

NORTON’S THEOREM
The Norton and Thévenin equivalent circuits can be found from each other by using the source transformation shown in figurer

below.

Ly = Ly
o) Z, ——o0
+
Eg -
Iy==" Ly | Zy = Zy, Ep, = LVZy
Th -—
O O
Example:
Determine the Norton equivalent circuit for the network external to the 6 resistor
R, X,
z, O
40 L
E =20V £0° X T=5Q R, Z60 E@ Z,
4—‘ O
_;_ | Norton = Norton
Solution:
Zy =Ry +jX, =3+j4=5453.10Q
Zz = _]XC = _]5 9}
gy =2tz 2453AXSL 790 L 1844 —7.50— 2500
NT 7 +Z,  3+j4—j5 IR
I £ 20 4 53.14A
Nz, 7 54531
Z Z, o]
™ | o
+ C
F @ Z; Ly Z Zy
O
The Norton equivalent circuit is shown in figure below
[
7500 — j2.50 O
: RZ7500
Iy = 4AZ — 53.13° Lyl RS6Q ==k | _ 4A/ - 5313 R 60
XCT 2.50 ()
-

||I—
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MAXIMUM POWER TRANSFER THEOREM
When applied to ac circuits, the maximum power transfer theorem states that
maximum power will be delivered to a load when the load impedance is the conjugate of the Thévenin
impedance across its terminals.
That is, for maximum power transfer to the load,
Zy=Zy O, =0
Therefore
Zr=RF¥jX+R+jX=2R

Example:
Find the load impedance for maximum power to the load, and find the maximum power.
Z; =6—j8=10s-531 R Xc
Z1Z, 102 — 53.1 x 8290 . 60 g0
Zp = = - - = 13.33 £36.87°
Zy+ 27, 6—j8+8 E—9\*40°® -&%3“ zZ
=10.66 + j8 _
Z;, =Zf, = 13332 —36.87° = 10.66 — j8 L l
£ EZ, 9,0 x 8290 12 /50y & o
= = = 290°

7. +Z, 6—j8+8
Then Zy Zp,
P B 12" _ 54

= — = = 3. w
Max 4R 4% 10.66 o
Z, O
* +
E Z2 ETH
J_ O

Example:

Find the load impedance for maximum power to the load, and find the maximum power

90

+ 90

E =
l()VZ()“@
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Basic of Electrical Engineering.

Power (ac)
Power (ac)
For any system, the power delivered to a load at any instant is defined by the product of the applied voltage
and the resulting current; that is,

=V
In this case, since v and i are sinusoidal quantities,plet us establish a general case where
v = V,sin(wt + 6)
[ = [,sin wt
Substituting the above equations for v and i into the power equation will result in
p = vi =V, [,,sin wtsin(wt + 6)
p = Vicos6(1 — cos2wt) + Visin Bsin 2wt

RESISTIVE CIRCUIT
For a purely resistive circuit , v and i are in phase,

pr = VIcos0(1 — cos2wt) + VIsin 0sin 2wt
pr = VI(1 — cos2wt)
APPARENT POWER
S =VI wvolt — amperes,VA
p = Scosf = SE,

INDUCTIVE CIRCUIT AND REACTIVE POWER
For a purely inductive circuit , v leads i by 90°,

p, = VIcos90(1 — cos2wt) + VIsin 90sin 2wt
p;, = Visin 2wt

In general, the reactive power associated with any circuit is defined to be VIsin 6,
The symbol for reactive power is Q, and its unit of measure is the volt-ampere reactive (VAR).
Q = VIsin @ volt-ampere reactive, VAR
For the inductor
Q. =VI

E, = cosf = c0s90 =0

CAPACITIVE CIRCUIT
pc = VIcos(—90)(1 — cos2wt) + VIsin(—90)sin 2wt
pc = —VIsin 2wt
Qc=VI VAR

F, = cosf = cos90 = 0

THE POWER TRIANGLE

The three quantities average power, apparent power, and reactive power can be related in the vector
domain by

S=P+Q
For an inductive load, the phasor power S, as it is often called, is defined by
S=P+jQ,

For a capacitive load, the phasor power S is defined by

S=P—jQc
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Basic of Electrical Engineering.

Power (ac)
Example:
Find the total number of watts, volt-amperes reactive, and volt-amperes, and the power factor F, of the
network. Draw the power triangle and find the current in phasor form.

Load 1

0 VAR
T 100 W

Load |2 Load| 3

E = 100V £0° 700 VAR (L) 1500 VAR (C)
200 W 300 W

Example:
Find the total number of watts, volt-amperes reactive, and volt amperes, and the power factor F for the

network and sketch the power triangle.
X

R
— ANV ,m\

I 6 Q) 70
+

E = 100V £0° @ X, A= 150

Example:
An electrical device is rated 5 kVA, 100 V at a 0.6 power-factor lag. What is the impedance of the device in
rectangular coordinates?

POWER-FACTOR CORRECTION

The process of introducing reactive elements to bring the power factor closer to unity is called power-factor
correction. Since most loads are inductive, the process normally involves introducing elements with
capacitive terminal characteristics having the sole purpose of improving the power factor.

Example:

A 5-hp motor with a 0.6 lagging power factor and an efficiency of 92% is connected to a 208-V, 60-Hz
supply.

a. Establish the power triangle for the load.

b. Determine the power-factor capacitor that must be placed in parallel with the load to raise the power
factor to unity.

c. Determine the change in supply current from the uncompensated to the compensated system.

Example:

a. A small industrial plant has a 10-kW heating load and a 20-kVA inductive load due to a bank of induction
motors. The heating elements are considered purely resistive (Fp = 1), and the induction motors have a
lagging power factor of 0.7. If the supply is 1000 V at 60 Hz, determine the capacitive element required to
raise the power factor to 0.95.

b. Compare the levels of current drawn from the supply.
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Magnetic Circuits
INTRODUCTION
Magnetism plays an integral part in almost every electrical device used today in industry, research, or the home.

Generators, motors, transformers, circuit breakers, televisions, computers, tape recorders, and telephones all employ
magnetic effects to perform a variety of important tasks.

MAGNETIC FIELDS

In the region surrounding a permanent magnet there exists a magnetic field, which can be represented by magnetic
flux lines similar to electric flux lines. Magnetic flux lines, however, do not have origins or terminating points as do
electric flux lines but exist in continuous loops, as shown in Figure below.

The symbol for magnetic flux is the Greek letter @ (phi).

The magnetic flux lines radiate from the north pole to the south pole, returning to the north pole through the metallic
bar.

. Conductor
A magnetic field is present around every wire that carries an electric g }
current. The direction of the magnetic flux lines can be found simply VNN
by placing the thumb of the right hand in the direction of S —
conventional current flow and noting the direction of the fingers. AN AN

(This method is commonly called the right-hand rule.)

In the Sl system of units, magnetic flux is measured in webers. The
number of flux lines per unit area is called the flux density, is
denoted by the capital letter B, and is measured in teslas. Its
magnitude is determined by the following equation:

o B = teslas (T)
b= a1 ® = webers (Wb)
A = square meters (m”)

where @ is the number of flux lines passing through the area A.

Example
Determine the flux density

-5
B=2=22" _5x1072T

A~ 12x1073 .
o 6 X 10 Wb1
A4 =12 %X 103 m?

PERMEABILITY

If cores of different materials with the same physical dimensions are used in the electromagnet described in Section
11.2, the strength of the magnet will vary in accordance with the core used. This variation in strength is due to the
greater or lesser number of flux lines passing through the core. Materials in which flux lines can readily be set up are
said to be magnetic and to have high permeability. The permeability (@) of a material, therefore, is a measure of the
ease with which magnetic flux lines can be established in the material. It is similar in many respects to conductivity in
electric circuits. The permeability of free space o (vacuum) is

w
Uo = 4m X 1077 —

A.-m
The ratio of the permeability of a material to that of free space is called its relative permeability; that is,
7
Hr = —
" o

RELUCTANCE
The resistance of a material to the flow of charge (current) is determined for electric circuits by the equation

R:pzﬂ

1
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Basic of Electrical Engincering.

Magnctic Poncact
The reluctance of a material to the setting up of magnetic flux lines in the material is determined by the following
equation:

M= At/Wb

Where 7 is the reluctance, | is the length of the magnetic path, and A is the cross-sectional area.

OHM’S LAW FOR MAGNETIC CIRCUITS

For magnetic circuits, the effect desired is the flux @. The cause is the magnetomotive force (mmf) % which is the external
force (or “pressure”) required to set up the magnetic flux lines within the magnetic material. The opposition to the setting up of
the flux @ is the reluctance i .

Substituting, we have

F

@:
R

The magnetomotive force Jf is proportional to the product of the number of turns around the core (in which the flux is to be
established) and the current through the turns of wire.

%= NI (ampere-turns, At)

MAGNETIZING FORCE
The magnetomotive force per unit length is called the magnetizing force (H).

H=-" (Atm)
Substituting for the magnetomotive force will result in

H= % (At/m)

Example:
Determine the magnetizing force for the following figure if N=20 and I=2A.
Sol
— N _ 40 _
H="=2=200 (AUm) 7

The flux density and the magnetizing force are related by the following equation:

B = uH
HYSTERESIS
A curve of the flux density B versus the magnetizing force H of a material is of particular importance to the engineer. Curves of
this type can usually be found in manuals, descriptive pamphlets, and brochures published by manufacturers of magnetic
materials. A typical B-H curve for a ferromagnetic material such as steel can be derived using the following setups.
The core is initially unmagnetized and the current | =0. If the current | is increased to some value above zero, the magnetizing
force H will increase to a value determined by

=t

The flux ® and the flux density B will also increase with the current | (or H).
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Basic of Electrical Engincering.
Magnctic Poncact
AMPERE’S CIRCUITAL LAW

Electric Circuits Magnetic Circuits

Cause E
Effect I
Opposition R

S S

If we apply the “cause” analogy to Kirchhoff’s voltage law 2.« V =0 , we obtain the following:

2(33}720

which, in words, states that the algebraic sum of the rises and drops of the mmf around a closed loop of a magnetic circuit is equal

to zero; that is, the sum of the rises in mmf equals the sum of the drops in mmf around a closed loop.

This equation referred to as Ampére’s circuital law. When it is applied to magnetic circuits, sources of mmf are expressed as

J= NI (ampere-turns, At)
And

F= HI (ampere-turns, At)

Example:
Consider the magnetic circuit appearing in Figure below constructed of three different ferromagnetic materials.

a

P

Solutions. oo | st
Applying Ampere’s circuital law, we have s
— N turns % |

- | Cobalt
NI — Hgplap + Hpelpe + Hegleg = 0 ‘
NI = Hgplap + Hpelpe + Heglea
Example
For the series magnetic circuit:
a. Find the value of | required to develop a magnetic flux of ® =4 x 10™* Wh. o
b. Determine u and p, for the material under these conditions. ; 42 100

] N = 400 turns § Castosteel core
Solutions: >

— 1 o~ 0.16m
B = 2 = 4X10_z = 02 T (/lllCi\l)l llmmtln
. A 2x10 . .

Using the B-H curves, we can determine the magnetizing force H: o
H (cast steel) = 170 At/m
Applying Ampére’s circuital law yields } G) >
NI = HI

l )
I :%: 170x016 _ oo 4
b. The permeability of the material can be found as

B _ 02 _ 1176 x 107 wh/a
=—= =1. X m
“=H 170 /

and the relative permeability is

po 1176 x 107°

U =—=

PRlEET= b 935.83
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Basic of Electrical Engincering.

Waguetic Concact
Example:
The electromagnet of Figure below has picked up a section of cast iron. Determine the current | required to establish the indicated
fluxinthe core, if Iy, = log = lof = lrg = 101.6 X 1073 m, L = lge = 127 X 1073 m, ® = 3.5 x 107* T and 4 = 6.452 x
10_4 m2 N = 50 turns

i Sheet steel
Solution: ‘r\Xﬁ,_(/" /

The flux density for each section is

_o_ awart R aie
B = A~ 6as2x107* 0.542T . —[ i
and the magnetizing force is

I |

| |

i |
H (sheet steel) = 70 At/m | ﬂh

|

|

|

H (cast iron) = 1600 At/m

e . . b | '/C'asri.ron
Determining HI for each section yields

|

lofap = lof + g + lap = 3% 101.6 X 1072 = 304.8 X 107> m - 3 N
Lyeae = lpe + log +1lge =101.6 X 1073 +2x 127 X 1073 =127 x 1073 m
Hepaplepap = 70 X 304.8 X 1073 = 21.34 At — E
Hpedelpeae = 1600 x 127 x 1073 = 203.2 At 7 ;I
The magnetic circuit equivalent and the electric circuit analogy for the system A -7
Applying Ampére’s circuital law, Sy g Ryao
NI = Hofaplofap + Hpeaelbeae = 21.34 + 203.2 = 224.54 \

224.54 )N\v AWy
I = =449 A Rpede Rycge
Example:

Determine the secondary current 12 for the transformer of Figure below if the resultant clockwise flux in the core is 1.5 X
1075 Wh

—~—

1, (2A)
N, = 60 tums

Solution: I

Z 74N, = 30 turns

Area (throughout) = 0.15 x 107 m?

The flux density for each section is Toooge = 016 m

B = @ _ 1.5><10‘_53 — 01T

A 0.15%x10
and the magnetizing force is Robeds Repedn
H (sheet steel) = 20 At/m : Wy Wy
Applying Ampére’s circuital law, N F

NIy = NpI, = Hlgpeqa
60 x 2 —301, =20 x0.16

I =$:3.89A

AIR GAPS
The spreading of the flux lines outside the common area of the core for the air gap in Fig. a is known as fringing. For
our purposes, we shall neglect this effect and assume the flux distribution to be as in Fig. b.

N

|

| |

¥ A

TR ) T
NI e R LY

] 1

| |

¥ ¥

The flux density of the air gap in is given by e |- 3
B, =22

g Ag (a) (b)
where, for our purposes,
cI:)g = Drore
And
Ag = Acore

For most practical applications, the permeability of air is taken to be equal to that of free space. The magnetizing force

of the air gap is then determined by

H, =22

9 Ho

and the mmf drop across the air gap is equal to Hglg. An equation for Hg is as follows:

5
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By ___ By _ 5
Hy == 20— = 7.96 x 10°B, (AUm)

Example:
Find the value of | required to establish a magnetic flux of ® = 0.75 x 10~* Wh in the series magnetic circuit of
following Figure.
Solution:

Reoye

Area (thronghout)
=15 x 100w’

The flux density for each section is

Bp=2=120_ g5

A 1.5x10

From the B-H curves,

H (cast steel) = 280 At/m s = AT —

Hy =7.96 x 10°B; =7.96 x 10° x 0.5 = 3.98 x 10°

Applying Ampere’s circuital law,

NI — Hlgpeaa —Hglg =0

_ 280x100x10 3+ Hglg 280x100x107>+3.98 x 10°%x10~
N 200

3

I =412A4

SERIES-PARALLEL MAGNETIC CIRCUITS

EXAMPLE
Determine the current | required to establish a flux of 1.5 x 10™* Wb in the section of the core

Sheet steel

Solution:

The equivalent magnetic circuit and the electric circuit analogy.
We have

The flux density for each section is

@ 1.5x107*
B,=-t= =025T s = o = 02

A - 6)(10_4 ]pe: 0:05.m - LB
From the B_H CUFVGS, Cross-sectional area-=6 x 10~ m* throughout
— Refa
Hycge (Sheet steel) = 40 At/m R : Ve

Applying Ampére’s circuital law around loop 2 (5
2(3 {F =0 £

Hpe lbe I-I_ Hblcde lbcdiozog
X0. . . .
H,, = —bedebede =160 At/m Electric circuit analogy Magnetic circuit

o . for the seri llel eauivalent
From the B-H curves, or the series paralle
system

B; =097T

®, =B;A=097 x6x107*=582x10"* Wb

The total flux density can be expressed as

O =P+ P, =582x10"*+15x10"*=732x10"* Wb
_ @p _ 732x107*

By =21 =122T

A 6x10™%
From the B-H curves,

Hetan (Sheet steel) = 400 At/m

Applying Ampére’s circuital law around loop 1
2;—3 ._J_F == O

NI — Hbelbe - Hefablefab =0
160x0.05+200%0.2

| =————F———=1.78A4
50

To demonstrate that m is sensitive to the magnetizing force H, the permeability of each section is determined as
follows.
For section bcde,

1.5 x 104 Wb

@, | @,
v

> N\ <>
) <R 2 1::«"5«7'0

N

1l
|
(=
),
AAAV

p=2=25_g25x10"3
H 40 :
_ K _ 6.25x10™ _
W = e T amx10o 4972.2
For section be,
p=2=27-606x10"3
H 160
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_ U _ 6.06x1073

Hr Ty amx10-7 4821
For section be,
p=2=22-305x%x10"3
H 40 \
_ K _ 3.05x10™ _
Br == o7 = 2426.41

Example:
Calculate the magnetic flux & for the magnetic circuit shown below:

A (throughout) = 2 x 104 m?

=7
. T=-sA - o~ -J b
Solution: AL i Y
By Ampére’s circuital law, Ti;g turns |
2 — = |
Ufp — - !
& = 0 I Wi 000 Toakmmes o
NI — Habcdalabcda =0 Lywse = 0.3m Cast iron
NI 5 X 60 abcda
Habcda = = = 1000 At/m
labcda 0.3

B (cast iron from Figure)=0.39 T
®=BA=039 x2x107*=0.78x 10~* Wb

Example:
Find the magnetic flux & for the series magnetic circuit of Figure below for the specified impressed mmf.
Cast iron
Solution:
Assuming that the total impressed mmf NI is across the air gap,
NI — Hgl,
y NI  4x100 oS
== X
977, ~ 0001 /m
By = poHy = 4m X 1077 X 4 x 10°> = 0.503 T N = 100 ums /,,,, = 0.16m
®, = O, = ByA =0.503 x 0.003 = 1.51 x 10~ Wb

H,ore (cast iron from B — H curve) = 1500 At/m



1.1 SYSTEMS OF UNITS

In the past, the systems of units most commonly used were
the English and metric, as outlined in Table below. Note that
while the English system is based on a single standard, the
metric is subdivided into two interrelated standards: the MKS
and the CGS.

Comparison of the English and metric svstems of units.

English Metric
MKS CGS SI
Length: Meter (m) Centimeter (cm) Meter (m)
Yard (yd) (39.37 in.) (2.54cm = 11in.)
(0.914 m) (100 em)
Mass:
Slug Kilogram (kg) Gram (g) Kilogram (kg)
(14.6 kg) (1000 g)
Foree:
Pound (Ib) Newton (N) Dyne Newton (N)
(445N) (100,000 dynes)
Temperature:
Fahrenheit (°F) Celsius or Centigrade (°C) Kelvin (K)
( P 32) Centigrade (°C) K =273.15 + °C
5 5 (2] 2
( =S CF 32))
Energy:
Foot-pound (ft-1b) Newton-meter (Nem) Dyne-centimeter or erg Joule (J)
(1.356 joules) or joule (J) (1 joule = 107 ergs)
(0.7376 ft-Ib)
Time:
Second (s) Second (s) Second (s) Second (s)

The International Bureau of Weights and Measures located at
Sevres, France, has been the host for the General Conference
of Weights and Measures, and attended by representatives
from all nations of the world. In 1960, the General Conference
adopted a system called Le Systems International unites
(International System of Units), which has the international
abbreviation SI. Since then, it has been adopted by the Institute
of Electrical and Electronic Engineers, Inc. (IEEE) in 1965 and by
the United States of America Standards Institute in 1967 as a
standard for all scientific and engineering literature.



Length:

1 yard (yd) = 0.914 meter (m} = 3 feat (ff} Im= 100cm = 3937 in.
254m =1
SI 1
and MES m . o
English lin Actual
English 1yd lengths
CGS 1 em JF

English 1ft
Mass: Force:
1 slug = 14.6 kilograms English

1 pound (Ib)

1 kilogram = 1000 g

1ke lg SIand
@i =
' Toewton M) gyme (CGS)

e

1 pound (Ib} = 4.45 newtons (N}
1 newton = 100,000 dynes (dyn)

Temperature:
MES
and
English CGs 51
{Boiling) — 2°F —100°C — 3IN15K Energy:
Englizh
1fIb ST and
MES 1 fi-lb = 1.336 joules
(Freezing) — 32°F 0'C — 27315K 1 joule (T} 1joule = 10° ergs
0°F
'F o= _?_:C + 32 IEIg (CGS:'
C= ;UE - 329
E=27315+°C
Absolute _ )
‘ ZET0) __ —459.7°F —-27315°C __ 0K
Fahrenheit Celsius or Eelvin
Centigrade

1.2. Current and Voltage

1.2.1 Introduction (JOHN DALTON)

A basic understanding of the fundamental concepts of current
and voltage requires a degree of familiarity with the atom and
its structure. The simplest of all atoms is the hydrogen atom,
made up of two basic particles, the proton and the electron.
The nucleus of the hydrogen atom is the proton, a positively
charged particle. The orbiting electron carries a negative
charge that is equal in magnitude to the positive charge of the
proton. In all other elements, the nucleus also contains
neutrons, which are slightly heavier than protons and have no
electrical charge. The helium atom, for example, has two
neutrons in addition to two electrons and two protons. In all




3

Nucleus

neutral atoms the number of electrons is equal to the number
of protons. The mass of the electron is 9.11 x 10728 g, and
that of the proton and neutron is 1.672 x 107%* g

Different atoms will have various numbers of electrons in
the concentric shells about the nucleus. The first shell, which
is closest to the nucleus, can contain only two electrons. If an
atom should have three electrons, the third must go to the
next shell. The second shell can contain a maximum of eight
electrons; the third, 18; and the fourth, 32; as determined by
the equation 2n2, where n is the shell number. These shells
are usually denoted by a number (n=1, 2, 3,...) or letter (n =

kI,m,...).

Each shell is then broken down into subshells, where the first
subshell can contain a maximum of two electrons; the second
subshell, six electrons; the third, 10 electrons; and the fourth,
14. The subshells are usually denoted by the letters s, p, d,
and f, in that order, outward from the nucleus.
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: 3 e e 14 ,-{ Nucleus

/ \gf " %
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e

2nd shell 3rd shell 4th shell v Proton
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. » Nucleus
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3 (b) Helium atom
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It has been determined by experimentation that unlike
charges attract, and like charges repel. The force of attraction
or repulsion between two charged bodies Q1 and Q2 can be
determined by Coulomb’s law:

- . O, 0-
F (attraction or repulsion) = # (Newtons)
72

Where F is in newton, k=9x10°V™°/C, Q1 and Q2 are the
charges in coulombs, and r is the distance in meters between
the two charges.

Copper is the most commonly used metal in the
electrical/electronics industry. An examination of its atomic
structure will help identify why it has such widespread
applications. The copper atom has one more electron than
needed to complete the first three shells. This incomplete
outermost subshell, possessing only one electron, and the
distance between this electron and the nucleus reveal that
the twenty-ninth electron is loosely bound to the copper
atom. If this twenty-ninth electron gains sufficient energy
from the surrounding medium to leave its parent atom, it is
called a free electron. In one cubic inch of copper at room
temperature, there are approximately 1.4 x 10%* free

electrons.
\ X
N\ \ N\
\ ' S U @—-—1e

2e le ©Ge le 6e 10e - \(201h)

\» » \» PARW » (29t

5 5 p s p d 5 P d f
@ 1st shell 2nd shell 3rd .e.he-ll II '| 4th shell |
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Nucleus . - | ' |
Remaining subshells empty
The Copper Atom / '
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1.2.2. CURRENT

Consider a short length of copper wire cut with an
imaginary perpendicular plane, producing the circular cross
section. At room temperature with no external forces applied,
there exists within the copper wire the random motion of free
electrons created by the thermal energy that the electrons
gain from the surrounding medium. When atoms lose their
free electrons, they acquire a net positive charge and are
referred to as positive ions. The free electrons are able to
move within these positive ions and leave the general area of
the parent atom, while the positive ions only oscillate in a
mean fixed position. For this reason, the free electron is the
charge carrier in a copper wire or any other solid conductor of
electricity.

Imaginary plane ﬁ

Random motion of electrons in a copper wire
with no external “pressure’” (voltage) applied.



Let us now connect copper wire between two battery
terminals and a light bulb, to create the simplest of electric
circuits. The battery, at the expense of chemical energy,
places a net positive charge at one terminal and a net
negative charge on the other. The instant the final connection
is made, the free electrons (of negative charge) will drift

toward the positive terminal, while the positive ions left

ra
e C Chemical J

activity Imaginary plane

behind in the copper wire will simply oscillate in a mean fixed

position. The negative terminal is a “supply” of electrons to be

drawn from when the electrons of the copper wire drift
toward the positive terminal.

The chemical activity of the battery will absorb the
electrons at the positive terminal and will maintain a steady
supply of electrons at the negative terminal. The flow of
charge (electrons) through the bulb will heat up the filament



of the bulb through friction to the point that it will glow red
hot and emit the desired light. If 6.242 x 108electrons drift
at uniform velocity through the imaginary circular cross
section in 1 second, the flow of charge, or current, is said to be
1 ampere (A) in honor of André Marie Ampeére.

In electric circuit, the charge is often carried by moving
electrons in the wire. Therefore, electric current are follows of
electric charge. The electric current is defined to be the rate at
which charge flow across any cross sectional area. If an
amount of charge AQ throughout a surface in a time
interval At, then the average current I, is given by:

Loy =0

av — At

The current in amperes can now be calculated using the
following equation:

O I = amperes (A)
I = —= O = coulombs (C)

/ t = seconds ()

Example 1

The charge flowing through the imaginary surface is 0.16 C
every 64 ms. Determine the current in amperes.

Example 2:

016 electrons to pass

Determine the time required for 4 x 1
through the imaginary surface if the current is 5 mA.(electron

charge 1.602 x 1071° Colomb).

7



1.2.2.1. Current Density

It is about how much current is following across the given
area and mathematically can be written as:

Example 3:

A copper wire of are 5mm? has a current of 5mA following
through it. Calculate the current density?

1.2.3 Resistance

The flow of charge through any material encounters an
opposing force similar in many respects to mechanical
friction. This opposition, due to the collisions between
electrons and between electrons and other atoms in the
material, which converts electrical energy into another form
of energy such as heat, is called the resistance of the material.
The unit of measurement of resistance is the ohm, for which
the symbol is Q, the capital Greek letter omega.

The resistance of any material with a uniform cross-sectional
area is determined by the following four factors:

1. Material

2. Length

3. Cross-sectional area
4. Temperature

At a fixed temperature of 20°C (room temperature), the
resistance is related to the other three factors by



l
R=pz

Where p (Greek letter rho) is a characteristic of the material
called the resistivity, / is the length of the sample, and A is the
cross-sectional area of the sample.

1.2.3.1 RESISTANCE: CIRCULAR WIRE

The resistivity p is also measured in ohms per mil-foot, or

ohm-meters in the Sl system of units. Some typical values of p
are:

Resistivity (p) of various materials.
|

Material p @ 20°C
Silver 99
Copper 10.37
Gold 14.7
Alumimum 17.0
Tungsten 33.0
Nickel 470
[ron 74.0
Constantan 295.0
Nichrome 600.0
Calorite 720.0
Carbon 21,000.0




For circular wires, the quantities p,[,and A have the
following units:

o: CM-ohms/ft at 7= 20°C
[: feet
A: circular mils (CM)

Note that the area of the conductor is measured in circular
mils (CM) and not in square meters, inches, and so on, as
determined by the equation:

xd?> 1= radis

Area (circle) = = = 4 d= dameter

A wire with a diameter of 1 mil has an area of 1 circular mil
(CM), the area in circular mils is simply equal to the diameter
in mils square; thatis: Acy = (d,i15)°

d =2 mls d =3 mils

o
I

@ ) N

A=Q2mils)}=4CM 4 (3 mils)? =9 CM /

'A('.\[ = ((lmi/s) by

T

1 mil

| squaremil I circular mil (CM)

Defining the circular mil (CM).

10



EXAMPLE 4

What is the resistance of a 100-ft length of copper wire with a
diameter of 0.020 in. at 20°C?

EXAMPLE 5

An undetermined number of feet of wire have been used.
Find the length of the remaining copper wire if it has a
diameter of 1/16 in. and a resistance of 0.5 Q.

EXAMPLE 6

What is the resistance of a copper bus-bar, as used in the
power distribution panel of a high-rise office building, with
the dimensions indicated in Fig. below?

1.2.3.2 WIRE TABLES

The wire table was designed primarily to standardize the size
of wire produced by manufacturers throughout the United

11



States. As a result, the manufacturer has a larger market and
the consumer knows that standard wire sizes will always be
available. The table was designed to assist the user in every
way possible; it usually includes data such as the cross-sectional
area in circular mils, diameter in mils, ohms per 1000 feet at
20°C, and weight per 1000 feet. The American Wire Gage
(AWG) sizes are given in Table below for solid round copper
wire. A column indicating the maximum allowable current in
amperes, as determined by the National Fire Protection
Association, has also been included.

American Wire Gaege (AWE) oizes.

B a wimom
ANllowable
Carrent
L1000 ft for EHWW
AT = Area (T af 20T Imsmlation {A)*
s S| (s fulil 211,500 0 D=0 230
(300 Litudi] &7, E10 OS1E 2040
200 it} 133,080 00780 1I7TS
1A o 15 530 00983 15D
1 B3, 502 0.1 240 130
2 5373 0. 1563 115
3 52,5634 01970 10D
4 41,742 02485 8=
5 33 102 3133 _
& 25, 250 03951 &=
T 20 E1S 4082
L 14, 502 05282 S
o 13, 0iet 07921
1k 10,381 Laoga =]
11 B X340 1250 _
12 §,.52a.0 1588 21
13 5 17E.4 2003 _
14 4155 A 535 1=
15 32587 3184
1] 25829 4006
17 2048 2 5064
18 1.624.3 5385
e 1L.ZBE.1 2051
20 1L.021.5 1015
21 E10 110 12 B0
x3 S42 40 165 14
23 45 23S
4 4201 2567
25 F 20 4 i
25 252110 40 81
27 2001 50 5147
8 15970 [ =]
o 12572 E1. 83
30 0= 500 1032
31 TR 130.1
32 63.21 1541
33 5013 2069
34 3N.T5 2509
35 31.52 IO
2] 25, 0p 4148
37 1983 5231
38 15.72 G505
I 1247 B3l B
40 QFr 1 10400




EXAMPLE 8

Find the resistance of 650 ft of #8 copper wire (T =20°C).
EXAMPLE 9

What is the diameter, in inches, of a #12 copper wire?
EXAMPLE 10

For the system of Fig. below, the total resistance of each
power line cannot exceed 0.025 Q, and the maximum current
to be drawn by the load is 95 A. What gage wire should be
used?

/Solid round copper wire

Input Load

100 ft

y

1.2.3.3 RESISTANCE: METRIC UNITS

The design of resistive elements for various areas of
application, including thin-film resistors and integrated
circuits, uses metric units for the quantities. In Sl units, the
resistivity would be measured in ohm-meters, the area in
square meters, and the length in meters. However, the meter
is generally too large a unit of measure for most applications,
and so the centimeter is usually employed. The resulting
dimensions are therefore

13



©0: ohm-centimeters
/- centimeters
A: square centimeters

Table below provides a list of values of r in ohm-centimeters.

Resistivity (p) of various materials in
ohm-centimeters.

Silver 1.645 X 107°
Copper 1.723 x 10~°
Gold 2.443 X 107°
Aluminum 2825 X 107°
Tungsten 5.485 X 107°
Nickel 7.811 X 107°
Tron 12.299 X 107°
Tantalum 1554 x 10°°
Nichrome 99.72 X 107°
Tin oxide 250 X 10~¢
Carbon 3500 X 10~¢
EXAMPLE 11

Determine the resistance of 100 ft of #28 copper telephone
wire if the diameter is 0.0126 in.

EXAMPLE 12

Determine the resistance of the thin-film resistor of Fig. below
if the sheet resistance Rs (defined by Rs =r/d) is 100 Q.

14



1.2.3.4. TEMPERATURE EFFECTS

Temperature has a significant effect on the resistance of
conductors, semiconductors, and insulators.

Absolute zero P
\‘L_.—-—""'- -
—2?3.15"V N —234.5°C 0°C T,

—

—
- v -

Inferred absolute zero

Effect of temperature on the resistance of copper.

X y

R1_ R2
OR

234.5+T1 234.5+T2
R1 N R2

EXAMPLE 13

If the resistance of a copper wire is 50 Q at 20°C, what is its
resistance at 100°C (boiling point of water)?

15



EXAMPLE 14

If the resistance of a copper wire at freezing (0°C) is 30 Q,
what is its resistance at -40°C?

EXAMPLE 15

If the resistance of aluminum wire at room temperature
(20°C) is 100 mQ (measured by a mille-ohmmeter), at what
temperature will its resistance increase to 120 mQ?

1.2.3.5 Temperature Coefficient of Resistance

There is a second popular equation for calculating the
resistance of a conductor at different temperatures.

1
%20 =11+ 20

as the temperature coefficient of resistance at a temperature
of 20°C, and R20 as the resistance of the sample at 20°C, the
resistance R1 at a temperature T1 is determined by:

R1 = R1[1 + a5o(T1 — 20)

Temperature coefficient of resistance for
various conductors at 20°C.
|

Temperature
Material Coefficient (a3g)
Silver 0.0038
Copper 0.00393
Gold 0.0034
Aluminum 0.00391
Tungsten 0.005
Nickel 0.006
Iron 0.0055
Constantan 0.000008
Nichrome 0.00044
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1.2.3.6. COLOR CODING AND STANDARD RESISTOR VALUE

A wide variety of resistors, fixed or variable, are large enough
to have their resistance in ohms printed on the casing. Some,
however, are too small to have numbers printed on them, so
a system of color coding is used. For the fixed molded
composition resistor, four or five color bands are printed on
one end of the outer casing

Resistor color coding.

Bands 1-3* Band 3 Band 4 Band 5

() Black 0.1 Gold |muriplving 5% Gold 1% Brown
| Brown  0.01 Silver| factors 10% Silver 0.1% Red

2 Red 20% Noband  0.01% Orange
3 Orange 0.001% Yellow
4 Yellow

§ Green

6 Blue

7 Violet

§ Gray

0 White

EXAMPLE 16

Find the range in which a resistor having the following color
bands must exist to satisfy the manufacturer’s tolerance:

a.1lstband 2nd band 3rdband 4thband 5th band
Gray Red Black Gold Brown
8 2 0 5% 1%
b.1stband 2ndband 3rd band 4th band 5th band
Orange  White Gold Silver No color

3 9 0.1 10%
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1.2.4 VOLTAGE

Ill

The flow of charge is established by an external “pressure”
derived from the energy that a mass has by virtue of its
position: potential energy. Energy, by definition, is the
capacity to do work. If a mass (m) is raised to some height (h)
above a reference plane, it has a measure of potential energy

expressed in joules (J) that is determined by
W =mgh Joules. (J)

Where g is the gravitational acceleration (9.754 m /s2). This

III

mass now has the “potential” to do work such as crush an

object placed on the reference plane.

In the battery, the internal chemical action will establish
(through an expenditure of energy) an accumulation of
negative charges (electrons) on one terminal (the negative
terminal) and positive charges (positive ions) on the other
(the positive terminal). A “positioning” of the charges has
been established that will result in a potential difference
between the terminals. If a conductor is connected between
the terminals of the battery, the electrons at the negative
terminal have sufficient potential energy to overcome
collisions with other particles in the conductor and the
repulsion from similar charges to reach the positive terminal
to which they are attracted.

A potential difference of 1 volt (V) exists between two points if
1 joule (J) of energy is exchanged in moving 1 coulomb (C) of
charge between the two points.
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The unit of measurement volt was chosen to honor
Alessandro Volta. Pictorially, if one joule of energy (1 J) is
required to move the one coulomb (1 C) of charge of Fig. 2.10
from position x to position y, the potential difference or
voltage between the two points is one volt (1 V).

w=11]

Defining the unit of measurement for voltage.

a potential difference or voltage is always measured between

two points in the system. Changing either point may change

the potential difference between the two points under
investigation.

In general, the potential difference between two points is
determined by

- |14
Q
Example 17

Find the potential difference between two points in an
electrical system if 60 J of energy are expended by a charge of
20 C between these two points.
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Example 18

Determine the energy expended moving a charge of 50 mC
through a potential difference of 6 V. Determine the energy
expended moving a charge of 50 mC through a potential
difference of 6 V.

Example 19

Find the voltage drop from the point a to point b, if 24]) are
required to move charge of 3C from point a to point b.

1.2.5 Power

Is an indication of how much work can be accomplished in a
specific amount of time, that is a rate of doing work.

Power measure in watt (W), and work in Joule (J).

14
P=—
t
1 hours power hp=746 watt
p=2=-Y_
t t

Example 20

Find the power delivered to the d.c motor if the voltage
applied is 120 v and the current equal to 5A.

1.2.6. Energy

Electric energy used or produced is the product of the electric
power and the time

W (kilo watt hours) =P (kilo watt) x t (hour) (Joules)
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Example 21

For the dial positions reading 5360, calculate the electricity
bill if the previous reading was 4650 Kwh and the average
coast is 7 € per kilo watt hour.

Example 22

What is the total coast of using the following loads at 7 € per
kilo watt hour.

a- 1200 w toaster for 30 min

b- Six 50 w bulb for 4 h.

c- 400 w washing machine for 45 min

d- 4800 w electric clothes dryer for 20 min
1.2.7 Efficiency

Any electrical systems that convert energy from one form to
another can be represented as

Input energy=output energy+ energy stored in the system or

lost
Win _ Wout + Wlost
t t t
Piy = Poyt + Piost
o output power
Efficiency =n = — X 100%
input power
Example 23

A 2 hp motor operates at an efficiency of 75%, what is the
power input in watt? If the input current is 9.05 A what is the
input voltage?
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